Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Real tree
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Characterizations == [[File:Four_point_condition.png|thumb|260x260px|Visualisation of the four points condition and the 0-hyperbolicity. In green: <math>(x,y)_t=(y,z)_t</math> ; in blue: <math>(x,z)_t</math>.]] Here are equivalent characterizations of real trees which can be used as definitions: 1) ''(similar to [[Tree (data structure)|trees]] as graphs)'' A real tree is a [[Intrinsic_metric|geodesic]] [[metric space]] which contains no subset [[Homeomorphism|homeomorphic]] to a circle.<ref>{{Cite book |last=Chiswell |first=Ian |url=https://www.worldcat.org/oclc/268962256 |title=Introduction to [lambda]-trees |date=2001 |publisher=World Scientific |isbn=978-981-281-053-3 |location=Singapore |oclc=268962256}}</ref> 2) A real tree is a connected metric space <math>(X,d)</math> which has the '''four points condition'''<ref>Peter Buneman, ''A Note on the Metric Properties of Trees'', Journal of combinatorial theory, B (17), {{p.|48-50}}, 1974.</ref> (see figure): :For all <math>x,y,z,t\in X,</math> <math> d(x,y)+d(z,t)\leq \max[d(x,z)+d(y,t)\,;\, d(x,t)+d(y,z)]</math>. 3) A real tree is a connected [[Δ-hyperbolic space|0-hyperbolic]] metric space<ref name=":0">{{Cite book |last=Evans |first=Stevan N. |title=Probability and Real Trees |publisher=École d’Eté de Probabilités de Saint-Flour XXXV |year=2005}}</ref> (see figure). Formally, :For all <math>x,y,z,t\in X,</math> <math> (x,y)_t\geq \min [ (x,z)_t\, ; \, (y,z)_t ],</math> where <math>(x,y)_t</math> denotes the [[Gromov product]] of <math>x</math> and <math>y</math> with respect to <math>t</math>, that is, <math>\textstyle\frac 1 2 \left( d(x, t) + d(y, t) - d(x, y) \right).</math> 4) ''(similar to the characterization of [[Tree (graph theory)#Plane tree|plane trees]] by their [[Galton-Watson tree|contour process]]).'' Consider a positive excursion of a function. In other words, let <math>e</math> be a continuous real-valued function and <math>[a,b]</math> an interval such that <math>e(a)=e(b)=0</math> and <math>e(t)>0</math> for <math>t\in ]a,b[</math>. For <math>x, y\in [a,b]</math>, <math>x\leq y</math>, define a [[Metric space|pseudometric]] and an [[equivalence relation]] with: :<math> d_e( x, y) := e(x)+e(y)-2\min(e(z)\, ;z\in[x,y]), </math> :<math> x\sim_e y \Leftrightarrow d_e(x,y)=0.</math> Then, the [[Quotient space (topology)|quotient space]] <math>([a,b]/\sim_e\, ,\, d_e) </math> is a real tree.<ref name=":0" /> Intuitively, the [[local minima]] of the excursion ''e'' are the parents of the [[local maxima]]. Another visual way to construct the real tree from an excursion is to "put glue" under the curve of ''e'', and "bend" this curve, identifying the glued points (see animation). [[File:Collage.ogg|center|thumb|300x300px|Partant d'une [[Excursion brownienne|excursion]] ''e'' (en noir), la déformation (en vert) représente le « pliage » de la courbe jusqu'au « collage » des points d'une même classe d'équivalence, l'état final est l'arbre réel associé à ''e''.]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)