Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Relevance logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Routley–Meyer models=== The standard model theory for relevance logics is the Routley-Meyer ternary-relational semantics developed by [[Richard Sylvan|Richard Routley]] and [[Bob Meyer (logician)|Robert Meyer]]. A Routley–Meyer frame F for a propositional language is a quadruple (W,R,*,0), where W is a non-empty set, R is a ternary relation on W, and * is a function from W to W, and <math>0\in W</math>. A Routley-Meyer model M is a Routley-Meyer frame F together with a valuation, <math>\Vdash</math>, that assigns a truth value to each atomic proposition relative to each point <math>a\in W</math>. There are some conditions placed on Routley-Meyer frames. Define <math>a\leq b</math> as <math>R0ab</math>. * <math>a\leq a</math>. * If <math>a\leq b</math> and <math>b\leq c</math>, then <math>a\leq c</math>. * If <math>d\leq a</math> and <math>Rabc</math>, then <math>Rdbc</math>. * <math>a^{**}=a</math>. * If <math>a\leq b</math>, then <math>b^*\leq a^*</math>. Write <math>M,a\Vdash A</math> and <math>M,a\nVdash A</math> to indicate that the formula <math>A</math> is true, or not true, respectively, at point <math>a</math> in <math>M</math>. One final condition on Routley-Meyer models is the hereditariness condition. * If <math>M,a\Vdash p</math> and <math>a\leq b</math>, then <math>M,b\Vdash p</math>, for all atomic propositions <math>p</math>. By an inductive argument, hereditariness can be shown to extend to complex formulas, using the truth conditions below. * If <math>M,a\Vdash A</math> and <math>a\leq b</math>, then <math>M,b\Vdash A</math>, for all formulas <math>A</math>. The truth conditions for complex formulas are as follows. * <math>M,a\Vdash A\land B \iff M, a\Vdash A</math> and <math>M,a\Vdash B</math> * <math>M,a\Vdash A\lor B \iff M, a\Vdash A</math> or <math>M,a\Vdash B</math> * <math>M,a\Vdash A\to B\iff \forall b,c((Rabc\land M,b\Vdash A)\Rightarrow M,c\Vdash B)</math> * <math>M,a\Vdash\lnot A\iff M,a^*\nVdash A</math> A formula <math>A</math> holds in a model <math>M</math> just in case <math>M,0\Vdash A</math>. A formula <math>A</math> holds on a frame <math>F</math> iff A holds in every model <math>(F,\Vdash)</math>. A formula <math>A</math> is valid in a class of frames iff A holds on every frame in that class. The class of all Routley–Meyer frames satisfying the above conditions validates that relevance logic B. One can obtain Routley-Meyer frames for other relevance logics by placing appropriate restrictions on R and on *. These conditions are easier to state using some standard definitions. Let <math>Rabcd</math> be defined as <math>\exists x(Rabx \land Rxcd)</math>, and let <math>Ra(bc)d</math> be defined as <math>\exists x(Rbcx \land Raxd)</math>. Some of the frame conditions and the axioms they validate are the following. {| class="wikitable" |- |+ |- ! scope="col" | Name ! scope="col" | Frame condition ! scope="col" | Axiom |- ! Pseudo-modus ponens | <math>Raaa</math> | <math>(A\land (A\to B))\to B</math> |- ! Prefixing | <math>Rabcd\Rightarrow Ra(bc)d</math> | <math>(A\to B)\to((C\to A)\to(C\to B))</math> |- ! Suffixing | <math>Rabcd\Rightarrow Rb(ac)d</math> | <math>(A\to B)\to((B\to C)\to(A\to C))</math> |- ! Contraction | <math>Rabc\Rightarrow Rabbc</math> | <math>(A\to(A\to B))\to(A\to B)</math> |- ! Hypothetical syllogism | <math>Rabc\Rightarrow Ra(ab)c</math> | <math>(A\to B)\land(B\to C)\to (A\to C)</math> |- ! Assertion | <math>Rabc\Rightarrow Rbac</math> | <math>A\to((A\to B)\to B)</math> |- ! E axiom | <math>Ra0a</math> | <math>((A\to A)\to B)\to B</math> |- ! Mingle axiom | <math>Rabc\Rightarrow a\leq c</math> or <math>b\leq c</math> | <math>A\to(A\to A)</math> |- ! Reductio | <math>Raa^*a</math> | <math>(A\to\lnot A)\to\lnot A</math> |- ! Contraposition | <math>Rabc\Rightarrow Rac^*b^*</math> | <math>(A\to B)\to (\lnot B\to\lnot A)</math> |- ! Excluded middle | <math>0^*\leq 0</math> | <math>A\lor\lnot A</math> |- ! Strict implication weakening | <math>0\leq a</math> | <math>A\to(B\to B)</math> |- ! Weakening | <math>Rabc\Rightarrow b\leq c</math> | <math>A\to(B\to A)</math> |} The last two conditions validate forms of weakening that relevance logics were originally developed to avoid. They are included to show the flexibility of the Routley–Meyer models.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)