Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riemann zeta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Riemann's Xi function== {{main|Riemann Xi function}} Riemann also found a [[Symmetry|symmetric]] version of the functional equation by setting <math display="block">\xi(s) =\frac{s(s-1)}{2} \times \pi^{-\frac{s}{2}}\Gamma\left( \frac{s}{2} \right)\zeta(s) = (s-1)\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}+1\right)\zeta(s)\ ,</math> which satisfies: <math display="block"> \xi(s) = \xi(1 - s) ~.</math> Returning to the functional equation's derivation in the previous section, we have <math display="block"> \xi(s) =\frac12 + \frac{s(s-1)}{2} \int_1^\infty \left(x^{-\frac{s}{2}-\frac{1}{2}} + x^{\frac{s}{2}-1}\right)\psi(x) dx </math> Using [[integration by parts]], <math display="block"> \xi(s) =\frac12 - \left[\left(sx^{\frac{1-s}{2}} + (1-s)x^{\frac{s}{2}}\right)\psi(x)\right]_1^\infty + \int_1^\infty \left(sx^{\frac{1-s}{2}} + (1-s)x^{\frac{s}{2}}\right)\psi'(x) dx </math> <math display="block"> \xi(s) =\frac12 + \psi(1) + \int_1^\infty \left(sx^{\frac{1-s}{2}} + (1-s)x^{\frac{s}{2}}\right)\psi'(x) dx </math> Using integration by parts again with a factorization of <math>x^{\frac32}</math>, <math display="block"> \xi(s) =\frac12 + \psi(1) - 2\left[x^{\frac32}\psi'(x)\left(x^{\frac{s-1}{2}} + x^{-\frac{s}{2}}\right)\right]_1^\infty + 2\int_1^\infty \left(x^{\frac{s-1}{2}} + x^{-\frac{s}{2}}\right)\frac{d}{dx}\left[x^{\frac32}\psi'(x)\right] dx </math> <math display="block"> \xi(s) =\frac12 +\psi(1) + 4\psi'(1) + 2\int_1^\infty \frac{d}{dx}\left[x^{\frac32}\psi'(x)\right]\left(x^{\frac{s-1}{2}} + x^{-\frac{s}{2}}\right) dx </math> As <math>\frac12 +\psi(1) + 4\psi'(1)=0</math>, <math display="block"> \xi(s) = 2\int_1^\infty \frac{d}{dx}\left[x^{\frac32}\psi'(x)\right]\left(x^{\frac{s-1}{2}} + x^{-\frac{s}{2}}\right) dx </math> Remove a factor of <math>x^{-\frac14}</math> to make the exponents in the remainder opposites. <math display="block"> \xi(s) = 2\int_1^\infty \frac{d}{dx}\left[x^{\frac32}\psi'(x)\right]x^{-\frac14}\left(x^{\frac{s-\frac12}{2}} + x^{\frac{\frac12-s}{2}}\right) dx </math> Using the [[hyperbolic functions]], namely <math>\cos(x)=\cosh(ix)=\frac{e^{ix}+e^{-ix}}{2}</math>, and letting <math>s=\frac12+it</math> gives <math display="block"> \xi(s) = 4\int_1^\infty \frac{d}{dx}\left[x^{\frac32}\psi'(x)\right]x^{-\frac14}\cos(\frac{t}2\log x) dx </math> and by separating the integral and using the [[power series]] for <math>\cos</math>, <math display="block"> \xi(s) = \sum_{n=0}^\infty a_{2n}t^{2n} </math> which led Riemann to his famous hypothesis.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)