Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Riesz representation theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Canonical norm and inner product on the dual space and anti-dual space === If <math>x = y</math> then <math>\langle \,x\mid x\, \rangle = \langle \,x, x\, \rangle</math> is a non-negative real number and the map <math display=block>\|x\| := \sqrt{\langle x, x \rangle} = \sqrt{\langle x \mid x \rangle}</math> defines a [[Norm (mathematics)|canonical norm]] on <math>H</math> that makes <math>H</math> into a [[normed space]].{{sfn|Trèves|2006|pp=112–123}} As with all normed spaces, the (continuous) dual space <math>H^*</math> carries a canonical norm, called the {{em|[[dual norm]]}}, that is defined by{{sfn|Trèves|2006|pp=112–123}} <math display=block>\|f\|_{H^*} ~:=~ \sup_{\|x\| \leq 1, x \in H} |f(x)| \quad \text{ for every } f \in H^*.</math> The canonical norm on the (continuous) [[anti-dual space]] <math>\overline{H}^*,</math> denoted by <math>\|f\|_{\overline{H}^*},</math> is defined by using this same equation:{{sfn|Trèves|2006|pp=112–123}} <math display=block>\|f\|_{\overline{H}^*} ~:=~ \sup_{\|x\| \leq 1, x \in H} |f(x)| \quad \text{ for every } f \in \overline{H}^*.</math> This canonical norm on <math>H^*</math> satisfies the [[parallelogram law]], which means that the [[polarization identity]] can be used to define a {{em|canonical inner product on <math>H^*,</math>}} which this article will denote by the notations <math display=block>\left\langle f, g \right\rangle_{H^*} := \left\langle g \mid f \right\rangle_{H^*},</math> where this inner product turns <math>H^*</math> into a Hilbert space. There are now two ways of defining a norm on <math>H^*:</math> the norm induced by this inner product (that is, the norm defined by <math>f \mapsto \sqrt{\left\langle f, f \right\rangle_{H^*}}</math>) and the usual [[dual norm]] (defined as the supremum over the closed unit ball). These norms are the same; explicitly, this means that the following holds for every <math>f \in H^*:</math> <math display=block>\sup_{\|x\| \leq 1, x \in H} |f(x)| = \|f\|_{H^*} ~=~ \sqrt{\langle f, f \rangle_{H^*}} ~=~ \sqrt{\langle f \mid f \rangle_{H^*}}.</math> As will be described later, the Riesz representation theorem can be used to give an equivalent definition of the canonical norm and the canonical inner product on <math>H^*.</math> The same equations that were used above can also be used to define a norm and inner product on <math>H</math>'s [[anti-dual space]] <math>\overline{H}^*.</math>{{sfn|Trèves|2006|pp=112–123}} '''Canonical isometry between the dual and antidual''' The [[complex conjugate]] <math>\overline{f}</math> of a functional <math>f,</math> which was defined above, satisfies <math display=block>\|f\|_{H^*} ~=~ \left\|\overline{f}\right\|_{\overline{H}^*} \quad \text{ and } \quad \left\|\overline{g}\right\|_{H^*} ~=~ \|g\|_{\overline{H}^*}</math> for every <math>f \in H^*</math> and every <math>g \in \overline{H}^*.</math> This says exactly that the canonical antilinear [[Bijective map|bijection]] defined by <math display=block>\begin{alignat}{4} \operatorname{Cong} :\;&& H^* &&\;\to \;& \overline{H}^* \\[0.3ex] && f &&\;\mapsto\;& \overline{f} \\ \end{alignat}</math> as well as its inverse <math>\operatorname{Cong}^{-1} ~:~ \overline{H}^* \to H^*</math> are antilinear [[Isometry|isometries]] and consequently also [[homeomorphism]]s. The inner products on the dual space <math>H^*</math> and the anti-dual space <math>\overline{H}^*,</math> denoted respectively by <math>\langle \,\cdot\,, \,\cdot\, \rangle_{H^*}</math> and <math>\langle \,\cdot\,, \,\cdot\, \rangle_{\overline{H}^*},</math> are related by <math display=block>\langle \,\overline{f}\, | \,\overline{g}\, \rangle_{\overline{H}^*} = \overline{\langle \,f\, | \,g\, \rangle_{H^*}} = \langle \,g\, | \,f\, \rangle_{H^*} \qquad \text{ for all } f, g \in H^*</math> and <math display=block>\langle \,\overline{f}\, | \,\overline{g}\, \rangle_{H^*} = \overline{\langle \,f\, | \,g\, \rangle_{\overline{H}^*}} = \langle \,g\, | \,f\, \rangle_{\overline{H}^*} \qquad \text{ for all } f, g \in \overline{H}^*.</math> If <math>\mathbb{F} = \R</math> then <math>H^* = \overline{H}^*</math> and this canonical map <math>\operatorname{Cong} : H^* \to \overline{H}^*</math> reduces down to the identity map.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)