Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Root test
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== ''Example 1:'' :<math> \sum_{i=1}^\infty \frac{2^i}{i^9} </math> Applying the root test and using the fact that <math> \lim_{n \to \infty} n^{1/n}=1,</math> ::<math> C = \lim_{n \to \infty}\sqrt[n]{\left|\frac{2^n}{n^9}\right|}= \lim_{n \to \infty}\frac{ \sqrt[n]{2^n} } { \sqrt[n]{n^9} } = \lim_{n \to \infty}\frac{ 2 } {(n^{1/n})^9 } = 2 </math> Since <math> C=2>1,</math> the series diverges.<ref>{{cite book | first1= William |last1= Briggs|first2= Lyle|last2 = Cochrane | title= Calculus: Early Transcendentals | url= https://archive.org/details/calculusearlytra0000brig/page/n5/mode/2up | url-access= registration | publisher= Addison Wesley | year=2011 }} p. 571. </ref> ''Example 2:'' :<math>\sum_{n=0}^\infty \frac{1}{2^{\lfloor n/2 \rfloor}}= 1 + 1 + \frac12 + \frac12 + \frac14 + \frac14 + \frac18 + \frac18 + \ldots </math> The root test shows convergence because :: <math>r= \limsup_{n\to\infty}\sqrt[n]{|a_n|} = \limsup_{n\to\infty}\sqrt[2n]{|a_{2n}|} = \limsup_{n\to\infty}\sqrt[2n]{|1/2^n|}=\frac1\sqrt{2}<1.</math> This example shows how the root test is stronger than the [[ratio test]]. The ratio test is inconclusive for this series as if <math>n</math> is even, <math>a_{n+1}/a_n = 1</math> while if <math>n</math> is odd, <math>a_{n+1}/a_n = 1/2</math>, therefore the limit <math>\lim_{n\to\infty} |a_{n+1}/a_n|</math> does not exist.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)