Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Runge–Kutta methods
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Second-order methods with two stages=== An example of a second-order method with two stages is provided by the explicit [[midpoint method]]: :<math> y_{n+1} = y_n + hf\left(t_n+\frac{1}{2}h, y_n+\frac{1}{2}hf(t_n,\ y_n)\right). </math> The corresponding tableau is :{| style="text-align: center" cellspacing="0" cellpadding="3" | style="border-right:1px solid;" | 0 |- | style="border-right:1px solid; border-bottom:1px solid;" | 1/2 || style="border-bottom:1px solid;" | 1/2 || style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || 0 || 1 |} The midpoint method is not the only second-order Runge–Kutta method with two stages; there is a family of such methods, parameterized by α and given by the formula<ref>{{harvnb|Süli|Mayers|2003|p=327}}</ref> :<math> y_{n+1} = y_n + h\bigl( (1-\tfrac1{2\alpha}) f(t_n, y_n) + \tfrac1{2\alpha} f(t_n + \alpha h, y_n + \alpha h f(t_n, y_n)) \bigr). </math> Its Butcher tableau is :{| style="text-align: center" cellspacing="0" cellpadding="8" | style="border-right:1px solid;" | 0 |- | style="border-right:1px solid; border-bottom:1px solid;" | <math>\alpha</math> || style="border-bottom:1px solid; text-align: center;" | <math>\alpha</math> || style="border-bottom:1px solid;" | |- | style="border-right:1px solid;" | || <math>(1-\tfrac1{2\alpha})</math> || <math>\tfrac1{2\alpha}</math> |} In this family, <math>\alpha=\tfrac12</math> gives the [[midpoint method]], <math>\alpha=1</math> is [[Heun's method]],<ref name="Süli 2003 328"/> and <math>\alpha=\tfrac23</math> is Ralston's method.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)