Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Scale-invariant feature transform
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Scale-invariant feature detection === Lowe's method for image feature generation transforms an image into a large collection of feature vectors, each of which is invariant to image translation, scaling, and rotation, partially invariant to illumination changes, and robust to local geometric distortion. These features share similar properties with neurons in the [[primary visual cortex]] that encode basic forms, color, and movement for object detection in primate vision.<ref name="Serre2005" /> Key locations are defined as maxima and minima of the result of [[difference of Gaussians]] function applied in [[scale space]] to a series of smoothed and resampled images. Low-contrast candidate points and edge response points along an edge are discarded. Dominant orientations are assigned to localized key points. These steps ensure that the key points are more stable for matching and recognition. SIFT descriptors robust to local affine distortion are then obtained by considering pixels around a radius of the key location, blurring, and resampling local image orientation planes.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)