Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Self-adjoint operator
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Spectrum of self-adjoint operators == {{see also|Spectrum (functional analysis)}} Let <math>A:\operatorname{Dom}(A) \to H</math> be an unbounded operator.{{sfn|Hall|2013|pp=133,177|ps=}} The '''[[resolvent set]]''' (or '''regular set''') of <math>A</math> is defined as : <math>\rho(A) = \left\{\lambda \in \mathbb{C}\,:\, \exist (A - \lambda I)^{-1}\;\text{bounded and densely defined}\right\}.</math> If <math>A</math> is bounded, the definition reduces to <math>A - \lambda I</math> being [[bijective]] on <math>H</math>. The '''[[Spectrum (functional analysis)|spectrum]]''' of <math>A</math> is defined as the complement : <math>\sigma(A) = \Complex \setminus \rho(A).</math> In finite dimensions, <math>\sigma(A)\subseteq \mathbb{C}</math> consists exclusively of (complex) [[eigenvalue]]s.{{sfn|de la Madrid Modino|2001|pp=95-97|ps=}} The spectrum of a self-adjoint operator is always real (i.e. <math>\sigma(A)\subseteq \mathbb{R}</math>), though non-self-adjoint operators with real spectrum exist as well.<ref>{{harvnb|Hall|2013}} Section 9.4</ref>{{sfn | Bebiano | da Providência | 2019 | p=}} For bounded ([[Normal_operator|normal]]) operators, however, the spectrum is real ''if and only if'' the operator is self-adjoint.{{sfn | Rudin | 1991 | pp=327|ps=}} This implies, for example, that a non-self-adjoint operator with real spectrum is necessarily unbounded. As a preliminary, define <math>S=\{x \in \operatorname{Dom}A \mid \Vert x\Vert=1\},</math> <math>\textstyle m=\inf_{x\in S} \langle Ax,x \rangle</math> and <math>\textstyle M=\sup_{x\in S} \langle Ax,x \rangle</math> with <math>m,M \in \mathbb{R} \cup \{\pm\infty\}</math>. Then, for every <math> \lambda \in \Complex </math> and every <math> x \in \operatorname{Dom}A, </math> : <math> \Vert (A - \lambda) x\Vert \geq d(\lambda)\cdot \Vert x\Vert,</math> where <math> \textstyle d(\lambda) = \inf_{r\in [m,M]} |r - \lambda|. </math> Indeed, let <math>x \in \operatorname{Dom}A \setminus \{0\}.</math> By the [[Cauchy–Schwarz inequality]], : <math> \Vert (A - \lambda) x\Vert \geq \frac{|\langle (A - \lambda) x,x\rangle|}{\Vert x\Vert} =\left|\left\langle A\frac{x}{\Vert x\Vert},\frac{x}{\Vert x\Vert}\right\rangle - \lambda\right| \cdot \Vert x\Vert \geq d(\lambda)\cdot \Vert x\Vert. </math> If <math> \lambda \notin [m,M], </math> then <math> d(\lambda) > 0, </math> and <math> A - \lambda I </math> is called ''bounded below''. {{math theorem|Theorem|Self-adjoint operator has real spectrum}} {{math proof| Let <math> A </math> be self-adjoint and denote <math> R_\lambda = A - \lambda I</math> with <math>\lambda \in \Complex.</math> It suffices to prove that <math>\sigma(A) \subseteq [m,M].</math> # Let <math>\lambda \in \Complex \setminus [m,M].</math> The goal is to prove the existence and boundedness of <math> R_\lambda^{-1}, </math> and show that <math> \operatorname{Dom} R_\lambda^{-1} = H. </math> We begin by showing that <math>\ker R_\lambda = \{0\}</math> and <math>\operatorname{Im} R_\lambda = H.</math> {{ ordered list | list-style-type = lower-alpha | As shown above, <math> R_\lambda </math> is bounded below, i.e. <math> \Vert R_\lambda x\Vert \geq d(\lambda)\cdot \Vert x\Vert, </math> with <math> d(\lambda) > 0. </math> The triviality of <math>\ker R_\lambda </math> follows. | It remains to show that <math> \operatorname{Im}R_\lambda = H.</math> Indeed, {{ ordered list | list-style-type = lower-roman | <math> \operatorname{Im}R_\lambda </math> is closed. To prove this, pick a sequence <math> y_n = R_\lambda x_n \in \operatorname{Im}R_\lambda </math> converging to some <math> y \in H.</math> Since <math display="block"> \|x_n - x_m\| \leq \frac{1}{d(\lambda)}\|y_n - y_m\|, </math> <math> x_n </math> is [[Cauchy sequence|fundamental]]. Hence, it converges to some <math> x\in H. </math> Furthermore, <math> y_n + \lambda x_n = Ax_n </math> and <math> y_n + \lambda x_n \to y + \lambda x. </math> The arguments made thus far hold for any symmetric operator. It now follows from self-adjointness that <math> A </math> is closed, so <math> x \in \operatorname{Dom}A = \operatorname{Dom}R_\lambda, </math> <math> Ax = y+\lambda x \in \operatorname{Im}A, </math> and consequently <math> y = R_\lambda x \in \operatorname{Im}R_\lambda. </math> | <math> \operatorname{Im}R_\lambda</math> is dense in <math> H. </math> The self-adjointness of <math> A </math> (i.e. <math> A^*=A </math>) implies <math> R_\lambda^* = R_{\bar\lambda}</math> and thus <math> \left(\operatorname{Im}R_\lambda\right)^\perp = \ker R_{\bar{\lambda}}</math>. The subsequent inclusion <math> \bar\lambda \in \Complex \setminus [m,M] </math> implies <math> d(\bar\lambda) > 0 </math> and, consequently, <math> \ker R_{\bar\lambda} = \{0\}. </math>}} }} # The operator <math> R_\lambda \colon \operatorname{Dom} A \to H </math> has now been proven to be bijective, so <math> R^{-1}_\lambda </math> exists and is everywhere defined. The graph of <math> R^{-1}_\lambda </math> is the set <math> \{ (R_\lambda x,x) \mid x \in \operatorname{Dom}A \}. </math> Since <math> R_\lambda </math> is closed (because <math> A </math> is), so is <math> R^{-1}_\lambda. </math> By [[closed graph theorem]], <math> R^{-1}_\lambda </math> is bounded, so <math> \lambda \notin \sigma(A). </math> }} {{math theorem|Theorem|Symmetric operator with real spectrum is self-adjoint}} {{math proof| # <math> A </math> is symmetric; therefore <math> A \subseteq A^*</math> and <math> A - \lambda I \subseteq A^* - \lambda I</math> for every <math> \lambda \in \Complex</math>. Let <math> \sigma(A) \subseteq [m,M]. </math> If <math> \lambda \notin [m,M]</math> then <math> \bar\lambda \notin [m,M] </math> and the operators <math>\{A - \lambda I,A - \bar\lambda I\} : \operatorname{Dom}A \to H </math> are both bijective. # <math> A - \lambda I = A^* - \lambda I. </math> Indeed, <math> H = \operatorname{Im}(A - \lambda I) \subseteq \operatorname{Im}(A^* - \lambda I)</math>. That is, if <math> \operatorname{Dom} (A - \lambda I) \subsetneq \operatorname{Dom} (A^* - \lambda I)</math> then <math> A^* - \lambda I </math> would not be injective (i.e. <math> \ker(A^* - \lambda I) \neq \{0\} </math>). But <math> \operatorname{Im}(A - \bar\lambda I)^\perp = \ker(A^* - \lambda I)</math> and, hence, <math> \operatorname{Im}(A - \bar\lambda I) \neq H. </math> This contradicts the bijectiveness. # The equality <math> A - \lambda I = A^* - \lambda I </math> shows that <math> A =A^*,</math> i.e. <math> A </math> is self-adjoint. Indeed, it suffices to prove that <math> A^* \subseteq A. </math> For every <math> x \in \operatorname{Dom} A^*</math> and <math> y =A^*x, </math> <math display="block"> A^*x = y \Leftrightarrow (A^*-\lambda I)x = y - \lambda x \Leftrightarrow (A-\lambda I)x = y - \lambda x \Leftrightarrow Ax = y. </math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)