Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Seminorm
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Algebraic properties== Every seminorm is a [[sublinear function]], and thus satisfies all [[Sublinear_function#Properties|properties of a sublinear function]], including [[convex function|convexity]], <math>p(0) = 0,</math> and for all vectors <math>x, y \in X</math>: the [[reverse triangle inequality]]: {{sfn|Narici|Beckenstein|2011|pp=120-121}}{{sfn|Narici|Beckenstein|2011|pp=177-220}} <math display=block>|p(x) - p(y)| \leq p(x - y)</math> and also <math display=inline>0 \leq \max \{p(x), p(-x)\}</math> and <math>p(x) - p(y) \leq p(x - y).</math>{{sfn|Narici|Beckenstein|2011|pp=120-121}}{{sfn|Narici|Beckenstein|2011|pp=177-220}} For any vector <math>x \in X</math> and positive real <math>r > 0:</math>{{sfn|Narici|Beckenstein|2011|pp=116−128}} <math display=block>x + \{y \in X : p(y) < r\} = \{y \in X : p(x - y) < r\}</math> and furthermore, <math>\{x \in X : p(x) < r\}</math> is an [[Absorbing set|absorbing]] [[Absolutely convex set|disk]] in <math>X.</math>{{sfn|Narici|Beckenstein|2011|pp=116–128}} If <math>p</math> is a sublinear function on a real vector space <math>X</math> then there exists a linear functional <math>f</math> on <math>X</math> such that <math>f \leq p</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}} and furthermore, for any linear functional <math>g</math> on <math>X,</math> <math>g \leq p</math> on <math>X</math> if and only if <math>g^{-1}(1) \cap \{x \in X : p(x) < 1\} = \varnothing.</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}} '''Other properties of seminorms''' Every seminorm is a [[balanced function]]. A seminorm <math>p</math> is a norm on <math>X</math> if and only if <math>\{x \in X : p(x) < 1\}</math> does not contain a non-trivial vector subspace. If <math>p : X \to [0, \infty)</math> is a seminorm on <math>X</math> then <math>\ker p := p^{-1}(0)</math> is a vector subspace of <math>X</math> and for every <math>x \in X,</math> <math>p</math> is constant on the set <math>x + \ker p = \{x + k : p(k) = 0\}</math> and equal to <math>p(x).</math><ref group=proof name=ConstantOnEquivClasses>Let <math>x \in X</math> and <math>k \in p^{-1}(0).</math> It remains to show that <math>p(x + k) = p(x).</math> The triangle inequality implies <math>p(x + k) \leq p(x) + p(k) = p(x) + 0 = p(x).</math> Since <math>p(-k) = 0,</math> <math>p(x) = p(x) - p(-k) \leq p(x - (-k)) = p(x + k),</math> as desired. <math>\blacksquare</math></ref> Furthermore, for any real <math>r > 0,</math>{{sfn|Narici|Beckenstein|2011|pp=116–128}} <math display="block">r \{x \in X : p(x) < 1\} = \{x \in X : p(x) < r\} = \left\{x \in X : \tfrac{1}{r} p(x) < 1 \right\}.</math> If <math>D</math> is a set satisfying <math>\{x \in X : p(x) < 1\} \subseteq D \subseteq \{x \in X : p(x) \leq 1\}</math> then <math>D</math> is [[Absorbing set|absorbing]] in <math>X</math> and <math>p = p_D</math> where <math>p_D</math> denotes the [[Minkowski functional]] associated with <math>D</math> (that is, the gauge of <math>D</math>).{{sfn|Schaefer|Wolff|1999|p=40}} In particular, if <math>D</math> is as above and <math>q</math> is any seminorm on <math>X,</math> then <math>q = p</math> if and only if <math>\{x \in X : q(x) < 1\} \subseteq D \subseteq \{x \in X : q(x) \leq\}.</math>{{sfn|Schaefer|Wolff|1999|p=40}} If <math>(X, \|\,\cdot\,\|)</math> is a normed space and <math>x, y \in X</math> then <math>\|x - y\| = \|x - z\| + \|z - y\|</math> for all <math>z</math> in the interval <math>[x, y].</math>{{sfn|Narici|Beckenstein|2011|pp=107-113}} Every norm is a [[convex function]] and consequently, finding a global maximum of a norm-based [[objective function]] is sometimes tractable. ===Relationship to other norm-like concepts=== Let <math>p : X \to \R</math> be a non-negative function. The following are equivalent: <ol> <li><math>p</math> is a seminorm.</li> <li><math>p</math> is a [[Convex function|convex]] [[F-seminorm|<math>F</math>-seminorm]].</li> <li><math>p</math> is a convex balanced [[Metrizable topological vector space|''G''-seminorm]].{{sfn|Schechter|1996|p=691}}</li> </ol> If any of the above conditions hold, then the following are equivalent: <ol> <li><math>p</math> is a norm;</li> <li><math>\{x \in X : p(x) < 1\}</math> does not contain a non-trivial vector subspace.{{sfn|Narici|Beckenstein|2011|p=149}}</li> <li>There exists a [[Normed vector space|norm]] on <math>X,</math> with respect to which, <math>\{x \in X : p(x) < 1\}</math> is bounded.</li> </ol> If <math>p</math> is a sublinear function on a real vector space <math>X</math> then the following are equivalent:{{sfn|Narici|Beckenstein|2011|pp=177-220}} <ol> <li><math>p</math> is a [[linear functional]];</li> <li><math>p(x) + p(-x) \leq 0 \text{ for every } x \in X</math>;</li> <li><math>p(x) + p(-x) = 0 \text{ for every } x \in X</math>;</li> </ol> ===Inequalities involving seminorms=== If <math>p, q : X \to [0, \infty)</math> are seminorms on <math>X</math> then: <ul> <li><math>p \leq q</math> if and only if <math>q(x) \leq 1</math> implies <math>p(x) \leq 1.</math>{{sfn|Narici|Beckenstein|2011|pp=149–153}}</li> <li>If <math>a > 0</math> and <math>b > 0</math> are such that <math>p(x) < a</math> implies <math>q(x) \leq b,</math> then <math>a q(x) \leq b p(x)</math> for all <math>x \in X.</math> {{sfn|Wilansky|2013|pp=18-21}}</li> <li>Suppose <math>a</math> and <math>b</math> are positive real numbers and <math>q, p_1, \ldots, p_n</math> are seminorms on <math>X</math> such that for every <math>x \in X,</math> if <math>\max \{p_1(x), \ldots, p_n(x)\} < a</math> then <math>q(x) < b.</math> Then <math>a q \leq b \left(p_1 + \cdots + p_n\right).</math>{{sfn|Narici|Beckenstein|2011|p=149}}</li> <li>If <math>X</math> is a vector space over the reals and <math>f</math> is a non-zero linear functional on <math>X,</math> then <math>f \leq p</math> if and only if <math>\varnothing = f^{-1}(1) \cap \{x \in X : p(x) < 1\}.</math>{{sfn|Narici|Beckenstein|2011|pp=149–153}}</li> </ul> If <math>p</math> is a seminorm on <math>X</math> and <math>f</math> is a linear functional on <math>X</math> then: <ul> <li><math>|f| \leq p</math> on <math>X</math> if and only if <math>\operatorname{Re} f \leq p</math> on <math>X</math> (see footnote for proof).<ref>Obvious if <math>X</math> is a real vector space. For the non-trivial direction, assume that <math>\operatorname{Re} f \leq p</math> on <math>X</math> and let <math>x \in X.</math> Let <math>r \geq 0</math> and <math>t</math> be real numbers such that <math>f(x) = r e^{i t}.</math> Then <math>|f(x)|= r = f\left(e^{-it} x\right) = \operatorname{Re}\left(f\left(e^{-it} x\right)\right) \leq p\left(e^{-it} x\right) = p(x).</math></ref>{{sfn|Wilansky|2013|p=20}}</li> <li><math>f \leq p</math> on <math>X</math> if and only if <math>f^{-1}(1) \cap \{x \in X : p(x) < 1 = \varnothing\}.</math>{{sfn|Narici|Beckenstein|2011|pp=177-220}}{{sfn|Narici|Beckenstein|2011|pp=149–153}}</li> <li>If <math>a > 0</math> and <math>b > 0</math> are such that <math>p(x) < a</math> implies <math>f(x) \neq b,</math> then <math>a |f(x)| \leq b p(x)</math> for all <math>x \in X.</math>{{sfn|Wilansky|2013|pp=18-21}}</li> </ul> ===Hahn–Banach theorem for seminorms=== Seminorms offer a particularly clean formulation of the [[Hahn–Banach theorem]]: :If <math>M</math> is a vector subspace of a seminormed space <math>(X, p)</math> and if <math>f</math> is a continuous linear functional on <math>M,</math> then <math>f</math> may be extended to a continuous linear functional <math>F</math> on <math>X</math> that has the same norm as <math>f.</math>{{sfn|Wilansky|2013|pp=21-26}} A similar extension property also holds for seminorms: {{Math theorem|name=Theorem{{sfn|Narici|Beckenstein|2011|pp=150}}{{sfn|Wilansky|2013|pp=18-21}}|note=Extending seminorms|math_statement= If <math>M</math> is a vector subspace of <math>X,</math> <math>p</math> is a seminorm on <math>M,</math> and <math>q</math> is a seminorm on <math>X</math> such that <math>p \leq q\big\vert_M,</math> then there exists a seminorm <math>P</math> on <math>X</math> such that <math>P\big\vert_M = p</math> and <math>P \leq q.</math> }} :'''Proof''': Let <math>S</math> be the [[convex hull]] of <math>\{m \in M : p(m) \leq 1\} \cup \{x \in X : q(x) \leq 1\}.</math> Then <math>S</math> is an [[Absorbing set|absorbing]] [[Absolutely convex set|disk]] in <math>X</math> and so the [[Minkowski functional]] <math>P</math> of <math>S</math> is a seminorm on <math>X.</math> This seminorm satisfies <math>p = P</math> on <math>M</math> and <math>P \leq q</math> on <math>X.</math> <math>\blacksquare</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)