Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sheffer sequence
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==References== {{refbegin}} *{{cite journal |last1=Rota |first1=G.-C. |authorlink1=Gian-Carlo Rota |last2=Kahaner |first2=D. |last3=Odlyzko |first3=A. |authorlink3=Andrew Odlyzko |title=On the Foundations of Combinatorial Theory VIII: Finite Operator Calculus |journal=Journal of Mathematical Analysis and Applications |volume=42 |issue=3 |date=June 1973 |pages=684β750 |doi=10.1016/0022-247X(73)90172-8|doi-access=free }} Reprinted in the next reference. *{{cite book |last1=Rota |first1=G.-C. |authorlink1=Gian-Carlo Rota |last2=Doubilet |first2=P. |last3=Greene |first3=C. |last4=Kahaner |first4=D. |last5=Odlyzko |first5=A. |last6=Stanley |first6=R. |title=Finite Operator Calculus |publisher=Academic Press |year=1975 |isbn=0-12-596650-4}} *{{cite journal |last=Sheffer |first=I. M. |authorlink=Isador M. Sheffer |title=Some Properties of Polynomial Sets of Type Zero |journal=[[Duke Mathematical Journal]] |volume=5 |issue=3 |pages=590β622 |year=1939 |doi=10.1215/S0012-7094-39-00549-1}} *{{Cite book |last=Roman |first=Steven |title=The Umbral Calculus |publisher=Academic Press Inc. [Harcourt Brace Jovanovich Publishers] |location=London |series=Pure and Applied Mathematics |isbn=978-0-12-594380-2 |mr=741185 |year=1984 |volume=111 |url=https://books.google.com/books?id=JpHjkhFLfpgC}} Reprinted by Dover, 2005. {{refend}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)