Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sheffer stroke
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Alternative notations and names== [[Charles Sanders Peirce|Peirce]] was the first to show the functional completeness of non-conjunction (representing this as <math>\overline{\curlywedge}</math>) but didn't publish his result.<ref name="peirce1880">{{cite encyclopedia |last1=Peirce |first1=C. S. |title=A Boolian Algebra with One Constant |encyclopedia=Collected Papers of Charles Sanders Peirce, Volume IV The Simplest Mathematics |editor1-last=Hartshorne |editor1-first=C. |editor2-last=Weiss |editor2-first=P. |orig-date=1880 |date=1933 |pages=13–18 |location=Massachusetts |publisher=Harvard University Press}}</ref><ref name="peirce1902">{{cite encyclopedia |last1=Peirce |first1=C. S. |title=The Simplest Mathematics |encyclopedia=Collected Papers of Charles Sanders Peirce, Volume IV The Simplest Mathematics |editor1-last=Hartshorne |editor1-first=C. |editor2-last=Weiss |editor2-first=P. |orig-date=1902 |date=1933 |pages=189–262 |location=Massachusetts |publisher=Harvard University Press}}</ref> Peirce's editor added <math>\overline{\curlywedge}</math>) for non-disjunction.<ref name="peirce1902"/> In 1911, {{ill|Stamm|pl|Edward Bronisław Stamm}} was the first to publish a proof of the completeness of non-conjunction, representing this with <math>\sim</math> (the '''Stamm hook''')<ref name="zach2023">{{cite web |last1=Zach |first1=R. |title=Sheffer stroke before Sheffer: Edward Stamm |url=https://richardzach.org/2023/02/sheffer-stroke-before-sheffer-edward-stamm/ |date=18 February 2023|access-date=2 July 2023}}</ref> and non-disjunction in print at the first time and showed their functional completeness.<ref name="Stamm_1911"/> In 1913, [[Henry Maurice Sheffer|Sheffer]] described non-disjunction using <math>\mid</math> and showed its functional completeness. Sheffer also used <math>\wedge</math> for non-disjunction.<ref name="zach2023" /> Many people, beginning with [[Jean Nicod|Nicod]] in 1917, and followed by [[Alfred North Whitehead|Whitehead]], [[Bertrand Russell|Russell]] and many others{{Who|date=May 2025}}, mistakenly thought Sheffer had described non-conjunction using <math>\mid</math>, naming this symbol the Sheffer stroke.{{Citation needed|date=May 2025}} In 1928, [[David Hilbert|Hilbert]] and [[Wilhelm Ackermann|Ackermann]] described non-conjunction with the operator <math>/</math>.<ref name="hilbert-ackermann1928">{{cite book |last1=Hilbert |first1=D. |last2=Ackermann |first2=W. |title=Grundzügen der theoretischen Logik |edition=1 |date=1928 |publisher=Verlag von Julius Springer |location=Berlin |page=9 |language=German}}</ref><ref name="hilbert-ackermann1950">{{cite book |last1=Hilbert |first1=D. |last2=Ackermann |first2=W. |editor1-last=Luce |editor1-first=R. E. |translator1-last=Hammond |translator1-first=L. M. |translator2-last=Leckie |translator2-first=G. G. |translator3-last=Steinhardt |translator3-first=F. |title=Principles of Mathematical Logic |date=1950 |publisher=Chelsea Publishing Company |location=New York |page=11}}</ref> In 1929, [[Jan Łukasiewicz|Łukasiewicz]] used <math>D</math> in <math>Dpq</math> for non-conjunction in his [[Polish notation]].<ref name="lukasiewicz1929">{{cite book |last1=Łukasiewicz |first1=J. |title=Elementy logiki matematycznej |orig-date=1929|date=1958 |location=Warszawa |publisher=Państwowe Wydawnictwo Naukowe |edition=2 |language=Polish}}</ref> An alternative notation for non-conjunction is <math>\uparrow</math>. It is not clear who first introduced this notation, although the corresponding <math>\downarrow</math> for non-disjunction was used by Quine in 1940.<ref name="quine1940">{{cite book |last1=Quine |first1=W. V |title=Mathematical Logic |date=1981 |orig-date=1940 |publisher=Harvard University Press |location=Cambridge, London, New York, New Rochelle, Melbourne and Sydney |edition=Revised |page=45}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)