Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Sigma-additive set function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Properties== Useful properties of an additive set function <math>\mu</math> include the following. ===Value of empty set=== Either <math>\mu(\varnothing) = 0,</math> or <math>\mu</math> assigns <math>\infty</math> to all sets in its domain, or <math>\mu</math> assigns <math>- \infty</math> to all sets in its domain. ''Proof'': additivity implies that for every set <math>A,</math> <math>\mu(A) = \mu(A \cup \varnothing) = \mu(A) + \mu( \varnothing)</math> (it's possible in the edge case of an empty domain that the only choice for <math>A</math> is the [[empty set]] itself, but that still works). If <math>\mu(\varnothing) \neq 0,</math> then this equality can be satisfied only by plus or minus infinity. ===Monotonicity=== If <math>\mu</math> is non-negative and <math>A \subseteq B</math> then <math>\mu(A) \leq \mu(B).</math> That is, <math>\mu</math> is a '''{{visible anchor|monotone set function}}'''. Similarly, If <math>\mu</math> is non-positive and <math>A \subseteq B</math> then <math>\mu(A) \geq \mu(B).</math> ===Modularity{{Anchor|modularity}}=== {{See also|Valuation (geometry)}} {{See also|Valuation (measure theory)}} A [[set function]] <math>\mu</math> on a [[family of sets]] <math>\mathcal{S}</math> is called a '''{{visible anchor|modular set function}}''' and a '''[[Valuation (geometry)|{{visible anchor|valuation}}]]''' if whenever <math>A,</math> <math>B,</math> <math>A\cup B,</math> and <math>A\cap B</math> are elements of <math>\mathcal{S},</math> then <math display=block> \phi(A\cup B)+ \phi(A\cap B) = \phi(A) + \phi(B)</math> The above property is called '''{{visible anchor|modularity}}''' and the argument below proves that additivity implies modularity. Given <math>A</math> and <math>B,</math> <math>\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B).</math> ''Proof'': write <math>A = (A \cap B) \cup (A \setminus B)</math> and <math>B = (A \cap B) \cup (B \setminus A)</math> and <math>A \cup B = (A \cap B) \cup (A \setminus B) \cup (B \setminus A),</math> where all sets in the union are disjoint. Additivity implies that both sides of the equality equal <math>\mu(A \setminus B) + \mu(B \setminus A) + 2\mu(A \cap B).</math> However, the related properties of [[Submodular set function|''submodularity'']] and [[Subadditive set function|''subadditivity'']] are not equivalent to each other. Note that modularity has a different and unrelated meaning in the context of complex functions; see [[modular form]]. ===Set difference=== If <math>A \subseteq B</math> and <math>\mu(B) - \mu(A)</math> is defined, then <math>\mu(B \setminus A) = \mu(B) - \mu(A).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)