Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Spectrogram
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Applications== * Early analog spectrograms were applied to a wide range of areas including the study of bird calls (such as that of the [[great tit]]), with current research continuing using modern digital equipment<ref>{{cite web|url=http://www.birdsongs.it/index.asp|title=BIRD SONGS AND CALLS WITH SPECTROGRAMS ( SONOGRAMS ) OF SOUTHERN TUSCANY ( Toscana β Italy )|website=www.birdsongs.it|access-date=7 April 2018}}</ref> and applied to all animal sounds. Contemporary use of the digital spectrogram is especially useful for studying [[frequency modulation]] (FM) in animal calls. Specifically, the distinguishing characteristics of FM chirps, broadband [[Clicking noise|clicks]], and social harmonizing are most easily visualized with the spectrogram. * Spectrograms are useful in assisting in overcoming speech deficits and in speech training for the portion of the population that is profoundly [[hearing impairment|deaf]].<ref>{{cite journal|title=A wearable tactile sensory aid for profoundly deaf children|first1=Frank A.|last1=Saunders|first2=William A.|last2=Hill|first3=Barbara|last3=Franklin|date=1 December 1981|journal=Journal of Medical Systems|volume=5|issue=4|pages=265β270|doi=10.1007/BF02222144|pmid=7320662|s2cid=26620843}}</ref> * The studies of [[phonetics]] and [[speech synthesis]] are often facilitated through the use of spectrograms.<ref>{{cite web|url=http://cslu.cse.ogi.edu/tutordemos/SpectrogramReading/spectrogram_reading.html|title=Spectrogram Reading|website=ogi.edu|access-date=7 April 2018|url-status=dead|archive-url=https://web.archive.org/web/19990427185722/http://cslu.cse.ogi.edu/tutordemos/SpectrogramReading/spectrogram_reading.html |archive-date=27 April 1999}}</ref><ref>{{cite web|url=http://www.fon.hum.uva.nl/praat/|title=Praat: doing Phonetics by Computer|website=www.fon.hum.uva.nl|access-date=7 April 2018}}</ref> * In deep learning-keyed speech synthesis, spectrogram (or spectrogram in [[mel scale]]) is first predicted by a seq2seq model, then the spectrogram is fed to a neural vocoder to derive the synthesized raw waveform. * By reversing the process of producing a spectrogram, it is possible to create a signal whose spectrogram is an arbitrary image. This technique can be used to hide a picture in a piece of audio and has been employed by several [[electronic music]] artists.<ref>{{cite web|url=http://www.bastwood.com/aphex.php|title=The Aphex Face β bastwood|website=www.bastwood.com|access-date=7 April 2018}}</ref> See also [[Steganography]]. * Some modern music is created using spectrograms as an intermediate medium; changing the intensity of different frequencies over time, or even creating new ones, by drawing them and then inverse transforming. See [[Audio timescale-pitch modification]] and [[Phase vocoder]]. * Spectrograms can be used to analyze the results of passing a test signal through a signal processor such as a filter in order to check its performance.<ref>{{cite web|url=http://src.infinitewave.ca|title=SRC Comparisons|website=src.infinitewave.ca|access-date=7 April 2018}}</ref> * High definition spectrograms are used in the development of RF and microwave systems.<ref>{{cite web|url=http://www.constantwave.com/gallery.aspx|title=constantwave.com β constantwave Resources and Information.|website=www.constantwave.com|access-date=7 April 2018}}</ref> * Spectrograms are now used to display [[scattering parameters]] measured with vector network analyzers.<ref>{{cite web |url=http://www.constantwave.com/spectro_vna.aspx |title=Spectrograms for vector network analyzers |archive-url=https://web.archive.org/web/20120810020043/http://www.constantwave.com/spectro_vna.aspx |archive-date=2012-08-10 |url-status=dead }}</ref> * The [[United States Geological Survey|US Geological Survey]] and the [[IRIS Consortium]] provide near real-time spectrogram displays for monitoring seismic stations<ref>{{cite web|url=https://earthquake.usgs.gov/monitoring/spectrograms/24hr/|title=Real-time Spectrogram Displays|website=earthquake.usgs.gov|access-date=7 April 2018}}</ref><ref>{{Cite web|url=https://service.iris.edu/mustang/noise-spectrogram/docs/1/help/|title=IRIS: MUSTANG: Noise-Spectrogram: Docs: v. 1: Help}}</ref> * Spectrograms can be used with [[recurrent neural network]]s for [[speech recognition]].<ref>{{Cite web|url=https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-with-deep-learning-28293c162f7a|title=Machine Learning is Fun Part 6: How to do Speech Recognition with Deep Learning|last=Geitgey|first=Adam|date=2016-12-24|website=Medium|access-date=2018-03-21}}</ref><ref>See also [[Praat]].</ref> * Individuals' spectrograms are collected by the [[Government of China|Chinese government]] as part of its [[Mass surveillance in China|mass surveillance]] programs.<ref>{{Cite news |date=November 23, 2023 |title=China's enormous surveillance state is still growing |newspaper=[[The Economist]] |url=https://www.economist.com/china/2023/11/23/chinas-enormous-surveillance-state-is-still-growing |url-access=subscription |access-date=2023-11-25 |issn=0013-0613}}</ref> * For a vibration signal, a spectrogram's color scale identifies the frequencies of a waveform's amplitude peaks over time. Unlike a time or frequency graph, a spectrogram correlates peak values to time and frequency. Vibration test engineers use spectrograms to analyze the frequency content of a continuous waveform, locating strong signals and determining how the vibration behavior changes over time.<ref>{{Cite web|url=https://vibrationresearch.com/blog/what-is-a-spectrogram/|title=What is a Spectrogram? | access-date=2023-12-18}}</ref> * Spectrograms can be used to analyze speech in two different applications: automatic detection of speech deficits in cochlear implant users and phoneme class recognition to extract phone-attribute features.<ref>{{cite journal|title=Multi-channel spectrograms for speech processing applications using deep learning methods|first1=Arias-Vergara |last1= T. |first2= Klumpp|last2=P.|first3= Vasquez-Correa|last3=J. C.|first4=NΓΆth|last4=E. |first5= Orozco-Arroyave|last5=J. R. |first6=Schuster |last6=M. |date=2021|journal=Pattern Analysis and Applications|volume=24 |issue=2 |pages=423β431 |doi=10.1007/s10044-020-00921-5 |doi-access=free}}</ref> * In order to obtain a speaker's pronunciation characteristics, some researchers proposed a method based on an idea from bionics, which uses spectrogram statistics to achieve a characteristic spectrogram to give a stable representation of the speaker's pronunciation from a linear superposition of short-time spectrograms.<ref>{{cite journal|title=Speaker recognition based on characteristic spectrograms and an improved self-organizing feature map neural network|first1=Yanjie |last1= Jia |first2= Xi|last2=Chen|first3= Jieqiong|last3=Yu|first4=Lianming|last4=Wang|first5= Yuanzhe|last5= Xu |first6=Shaojin |last6=Liu |first7=Yonghui |last7=Wang |date=2021|journal=Complex & Intelligent Systems|volume=7 |issue=4 |pages=1749β1757 |doi=10.1007/s40747-020-00172-1 |doi-access=free}}</ref> * Researchers explore a novel approach to ECG signal analysis by leveraging spectrogram techniques, possibly for enhanced visualization and understanding. The integration of MFCC for feature extraction suggests a cross-disciplinary application, borrowing methods from audio processing to extract relevant information from biomedical signals.<ref>{{cite journal|url=https://link.springer.com/article/10.1007/s12652-021-02926-2|title=Spectrogram analysis of ECG signal and classification efficiency using MFCC feature extraction technique|first1=Arpitha |last1= Yalamanchili |first2= G. L.|last2=Madhumathi |first3= N.|last3=Balaji |date=2022|journal=Journal of Ambient Intelligence and Humanized Computing|volume=13 |issue=2 |pages=757β767 |doi=10.1007/s12652-021-02926-2 |s2cid=233657057 |url-access=subscription }}</ref> * Accurate interpretation of temperature indicating paint (TIP) is of great importance in aviation and other industrial applications. 2D spectrogram of TIP can be used in temperature interpretation.<ref>{{cite journal|url=https://www.sciencedirect.com/science/article/pii/S0263224123008813|title=Temperature interpretation method for temperature indicating paint based on spectrogram|first1=Junfeng |last1= Ge |first2= Li|last2=Wang |first3= Kang|last3=Gui |first4= Lin|last4=Ye |date=30 September 2023|journal=Measurement|volume=219 |doi=10.1016/j.measurement.2023.113317 |bibcode=2023Meas..21913317G |s2cid=259871198 |url-access=subscription }}</ref> * The spectrogram can be used to process the signal for the rate of change of the human thorax. By visualizing respiratory signals using a spectrogram, the researchers have proposed an approach to the classification of respiration states based on a neural network model.<ref>{{cite journal|title=Classification of Respiratory States Using Spectrogram with Convolutional Neural Network|first1=Cheolhyeong |last1= Park |first2= Deokwoo|last2=Lee |date=11 February 2022|journal=Applied Sciences|volume=12 |issue=4 |page=1895 |doi=10.3390/app12041895 |doi-access=free }}</ref> {{clear}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)