Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Statistical process control
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Variation in manufacturing== In manufacturing, quality is defined as conformance to specification. However, no two products or characteristics are ever exactly the same, because any process contains many sources of variability. In mass-manufacturing, traditionally, the quality of a finished article is ensured by post-manufacturing inspection of the product. Each article (or a sample of articles from a production lot) may be accepted or rejected according to how well it meets its design [[specification]]s, SPC uses [[statistical]] tools to observe the performance of the production process in order to detect significant variations before they result in the production of a sub-standard article. Any source of variation at any point of time in a process will fall into one of two classes. ;(1) ''Common'' causes: 'Common' causes are sometimes referred to as 'non-assignable', or 'normal' sources of variation. It refers to any source of variation that consistently acts on process, of which there are typically many. This type of causes collectively produce a statistically stable and repeatable distribution over time. ;(2) ''Special'' causes: 'Special' causes are sometimes referred to as 'assignable' sources of variation. The term refers to any factor causing variation that affects only some of the process output. They are often intermittent and unpredictable. Most processes have many sources of variation; most of them are minor and may be ignored. If the dominant assignable sources of variation are detected, potentially they can be identified and removed. When they are removed, the process is said to be 'stable'. When a process is stable, its variation should remain within a known set of limits. That is, at least, until another assignable source of variation occurs. For example, a breakfast cereal packaging line may be designed to fill each cereal box with 500 grams of cereal. Some boxes will have slightly more than 500 grams, and some will have slightly less. When the package weights are measured, the data will demonstrate a [[probability distribution|distribution]] of net weights. If the production process, its inputs, or its environment (for example, the machine on the line) change, the distribution of the data will change. For example, as the cams and pulleys of the machinery wear, the cereal filling machine may put more than the specified amount of cereal into each box. Although this might benefit the customer, from the manufacturer's point of view it is wasteful, and increases the cost of production. If the manufacturer finds the change and its source in a timely manner, the change can be corrected (for example, the cams and pulleys replaced). From an SPC perspective, if the weight of each cereal box varies randomly, some higher and some lower, always within an acceptable range, then the process is considered stable. If the cams and pulleys of the machinery start to wear out, the weights of the cereal box might not be random. The degraded functionality of the cams and pulleys may lead to a non-random linear pattern of increasing cereal box weights. We call this common cause variation. If, however, all the cereal boxes suddenly weighed much more than average because of an unexpected malfunction of the cams and pulleys, this would be considered a special cause variation.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)