Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Stellar dynamics
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== An example of the Poisson Equation and escape speed in a uniform sphere === Consider an analytically smooth spherical potential <math display="block"> \begin{align} \Phi(r) & \equiv \left(-V_0^2\right) + \left[{r^2 -r_0^2 \over 2r_0^2}, ~~ 1 -{r_0 \over r} \right]_{\max} \!\!\!\! V_0^2 \equiv \Phi(r_0)-{V_e^2(r) \over 2}, ~~\Phi(r_0) = - V_0^2 , \\ \mathbf{g} &= -\mathbf{\nabla} \Phi(r) = -\Omega^2 r H(r_0 - r) - { G M_0 \over r^2}H(r-r_0), ~~\Omega={V_0 \over r_0}, ~~M_0 = {V_0^2 r_0 \over G},\end{align}</math> where <math> V_e(r) </math> takes the meaning of the speed to "escape to the edge" <math> r_0</math>, and <math>\sqrt{2}V_0 </math> is the speed to "escape from the edge to infinity". The gravity is like the restoring force of harmonic oscillator inside the sphere, and Keplerian outside as described by the Heaviside functions. We can fix the normalisation <math> V_0 </math> by computing the corresponding density using the spherical Poisson Equation <math display="block"> G\rho = {d \over 4 \pi r^2 dr} {r^2 d\Phi \over dr} = { d (G M) \over 4 \pi r^2 dr} = {3 V_0^2 \over 4 \pi r_0^2}H(r_0-r), </math> where the enclosed mass <math display="block"> M(r) = {r^2 d\Phi \over G dr} = \int_0^{r} dr \int_0^{\pi} (r d\theta) \int_0^{2 \pi} (r \sin\theta d\varphi) \rho_0 H(r_0-r) = \left. M_0 x^3\right|_{x={r \over r_0}}.</math> Hence the potential model corresponds to a uniform sphere of radius <math> r_0 </math>, total mass <math> M_0 </math> with <math display="block"> {V_0 \over r_0} \equiv \sqrt{4\pi G \rho_0 \over 3} = \sqrt{G M_0 \over r_0^3}. </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)