Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Subgiant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==={{Solar mass|0.4}} to {{solar mass|0.9}}=== [[File:M5 colour magnitude diagram.png|thumb|right|upright=1.2|H–R diagram for [[globular cluster]] [[Messier 5|M5]], showing a short but densely-populated subgiant branch of stars slightly less massive than the Sun]] Stars with 40 percent the mass of the Sun and larger have non-convective cores with a strong temperature gradient from the centre outwards. When they exhaust hydrogen at the core of the star, the shell of hydrogen surrounding the central core continues to fuse without interruption. The star is considered to be a subgiant at this point although there is little change visible from the exterior.<ref name=pols/> As the fusing hydrogen shell converts its mass into helium the convective effect separates the helium towards the core where it very slowly increases the mass of the non-fusing core of nearly pure helium plasma. As this takes place the fusing hydrogen shell gradually expands outward which increases the size of the outer shell of the star up to the subgiant size from two to ten times the original radius of the star when it was on the main sequence. The expansion of the outer layers of the star into the subgiant size nearly balances the increase energy generated by the hydrogen shell fusion causing the star to nearly maintain its surface temperature. This causes the spectral class of the star to change very little in the lower end of this range of star mass. The subgiant surface area radiating the energy is so much larger the potential [[circumstellar habitable zone]] where planetary orbits will be in the range to form liquid water is shifted much further out into any planetary system. The surface area of a sphere is found as 4πr<sup>2</sup> so a sphere with a radius of {{solar radius|2}} will release 400% as much energy at the surface and a sphere with a {{solar radius|10}} will release 10000% as much energy.{{citation needed|date=January 2022}} The helium core mass is below the [[Schönberg–Chandrasekhar limit]] and it remains in thermal equilibrium with the fusing hydrogen shell. Its mass continues to increase and the star very slowly expands as the hydrogen shell migrates outwards. Any increase in energy output from the shell goes into expanding the envelope of the star and the luminosity stays approximately constant. The subgiant branch for these stars is short, horizontal, and heavily populated, as visible in very old clusters.<ref name=pols/> After one to eight billion years, the helium core becomes too massive to support its own weight and becomes degenerate. Its temperature increases, the rate of fusion in the hydrogen shell increases, the outer layers become strongly convective, and the luminosity increases at approximately the same effective temperature. The star is now on the [[Red-giant branch]].<ref name=salaris2005/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)