Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Superluminal motion
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Derivation of the apparent velocity== {{Unreferenced section|date=August 2023}} A [[relativistic jet]] coming out of the center of an [[active galactic nucleus]] is moving along AB with a velocity ''v'', and is observed from the point O. At time <math>t_1</math> a light ray leaves the jet from point A and another ray leaves at time <math>t_2=t_1+\delta t </math> from point B. An observer at O receives the rays at time <math>t_1^\prime</math> and <math>t_2^\prime</math> respectively. The angle <math>\phi</math> is small enough that the two distances marked <math>D_L</math> can be considered equal. [[File:Superluminal motion in AGN jets.png|right|400px]] : <math>AB = v \, \delta t</math> : <math>AC = v \, \delta t \cos\theta</math> : <math>BC = v \, \delta t \sin\theta</math> : <math>t_2-t_1 = \delta t</math> : <math>t_1' = t_1 + \frac{D_L + v \, \delta t \cos\theta}{c}</math> : <math>t_2' = t_2 + \frac{D_L}{c}</math> : <math>\delta t' = t_2' - t_1' = t_2 - t_1 - \frac{v \, \delta t \cos\theta}{c} = \delta t - \frac{v \, \delta t \cos\theta}{c} = \delta t (1-\beta \cos\theta)</math>, where <math>\beta=v/c</math> : <math>\delta t = \frac{\delta t'}{1-\beta\cos\theta}</math> : <math>BC = D_L\sin\phi \approx \phi D_L = v \, \delta t \sin\theta \Rightarrow \phi D_L = v\sin\theta\frac{\delta t'}{1-\beta\cos\theta}</math> Apparent transverse velocity along <math>CB</math>, <math>v_\text{T} = \frac{\phi D_L}{\delta t'}=\frac{v\sin\theta}{1-\beta\cos\theta}</math> : <math>\beta_\text{T} = \frac{v_\text{T}}{c} = \frac{\beta\sin\theta}{1-\beta\cos\theta}.</math> The apparent transverse velocity is maximal for angle (<math>0 <\beta < 1</math> is used) : <math>\frac{\partial\beta_\text{T}}{\partial\theta} = \frac{\partial}{\partial\theta} \left[\frac{\beta\sin\theta}{1-\beta\cos\theta}\right] = \frac{\beta\cos\theta}{1-\beta\cos\theta} - \frac{(\beta\sin\theta)^2}{(1-\beta\cos\theta)^2} = 0</math> : <math>\Rightarrow \beta\cos\theta(1-\beta\cos\theta)^2 = (1 - \beta\cos\theta) (\beta\sin\theta)^2</math> : <math>\Rightarrow \beta\cos\theta (1-\beta\cos\theta) = (\beta\sin\theta)^2 \Rightarrow \beta\cos\theta - \beta^2\cos^2\theta = \beta^2\sin^2\theta \Rightarrow \cos\theta_\text{max} = \beta</math> : <math>\Rightarrow \sin\theta_\text{max} = \sqrt{1-\cos^2\theta_\text{max}} = \sqrt{1-\beta^2} = \frac{1}{\gamma}\,</math>, where <math>\gamma=\frac{1}{\sqrt{1-\beta^2}}</math> : <math>\therefore \beta_\text{T}^\text{max} = \frac{\beta\sin\theta_\text{max}}{1-\beta\cos\theta_\text{max}} = \frac{\beta/\gamma}{1-\beta^2} = \beta\gamma</math> If <math>\gamma \gg 1</math> (i.e. when velocity of jet is close to the velocity of light) then <math>\beta_\text{T}^\text{max} > 1</math> despite the fact that <math>\beta < 1</math>. And of course <math>\beta_\text{T} > 1</math> means that the apparent transverse velocity along <math>CB</math>, the only velocity on the sky that can be measured, is larger than the velocity of light in vacuum, i.e. the motion is apparently superluminal.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)