Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Technical drawing
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Computer aided design=== {{Main article|Computer-aided design|Product and manufacturing information}} Today, the mechanics of the drafting task have largely been automated and accelerated through the use of [[computer-aided design]] systems (CAD). There are two types of computer-aided design systems used for the production of technical drawings: [[2D computer graphics|two dimensions]] (2D) and [[3D computer graphics|three dimensions]] (3D). [[File:Construction drawing autocad.jpg|thumb|right|An example of a drawing drafted in [[AutoCAD]]]] 2D CAD systems such as [[AutoCAD]] or [[MicroStation]] replace the paper drawing discipline. The lines, circles, arcs, and curves are created within the software. It is down to the technical drawing skill of the user to produce the drawing. There is still much scope for error in the drawing when producing first and third angle [[orthographic projection]]s, auxiliary projections and [[Multiview orthographic projection#Section|cross-section view]]s. A 2D CAD system is merely an electronic drawing board. Its greatest strength over direct to paper technical drawing is in the making of revisions. Whereas in a conventional hand drawn technical drawing, if a mistake is found, or a modification is required, a new drawing must be made from scratch, the 2D CAD system allows a copy of the original to be modified, saving considerable time. 2D CAD systems can be used to create plans for large projects such as buildings and aircraft but provide no way to check the various components will fit together. [[Image:cad crank.jpg|thumb|left|View of a CAD model of a four-[[Cylinder (engine)|cylinder]] [[Straight engine|inline]] [[crankshaft]] with [[piston]]s]] A 3D CAD system (such as [[KeyCreator]], [[Autodesk Inventor]], or [[SolidWorks]]) first produces the geometry of the part; the technical drawing comes from user defined views of that geometry. Any orthographic, projected or sectioned view is created by the software. There is no scope for error in the production of these views. The main scope for error comes in setting the parameter of first or third angle projection and displaying the relevant symbol on the technical drawing. 3D CAD allows individual parts to be assembled together to represent the final product. Buildings, aircraft, ships, and cars are modelled, assembled, and checked in 3D before technical drawings are released for manufacture. Both 2D and 3D CAD systems can be used to produce technical drawings for any discipline. The various disciplines (electrical, electronic, pneumatic, hydraulic, etc.) have industry recognized symbols to represent common components. [[British Standards|BS]] and [[ISO]] produce standards to show recommended practices but it is up to individuals to produce the drawings to a standard. There is no definitive standard for layout or style. The only standard across engineering workshop drawings is in the creation of orthographic projections and cross-section views. In representing complex, three-dimensional objects in two-dimensional drawings, the objects can be described by at least one view plus material thickness note, two, three, or as many views and sections that are required to show all features of object. {{Clear}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)