Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Telescoping series
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Related concepts== A ''telescoping product'' is a finite [[Product (mathematics)|product]] (or the partial product of an infinite product) that can be canceled by the method of quotients to be eventually only a finite number of factors.<ref name="Brilliant">{{cite web |title=Telescoping Series - Product |url=https://brilliant.org/wiki/telescoping-series-product/ |website=Brilliant Math & Science Wiki |publisher=Brilliant.org |access-date=9 February 2020 |language=en-us}}</ref><ref>{{cite web |last1=Bogomolny |first1=Alexander |title=Telescoping Sums, Series and Products |url=https://www.cut-the-knot.org/m/Algebra/TelescopingSums.shtml |website=Cut the Knot |access-date=9 February 2020}}</ref> It is the finite products in which consecutive terms cancel denominator with numerator, leaving only the initial and final terms. Let <math>a_n</math> be a sequence of numbers. Then, <math display="block"> \prod_{n=1}^N \frac{a_{n-1}}{a_n} = \frac{a_0}{a_N}.</math> If <math>a_n </math> converges to 1, the resulting product gives: <math display="block"> \prod_{n=1}^\infty \frac{a_{n-1}}{a_n} = a_0</math> For example, the infinite product<ref name="Brilliant"/> <math display="block">\prod_{n=2}^{\infty} \left(1-\frac{1}{n^2} \right)</math> simplifies as <math display="block">\begin{align} \prod_{n=2}^{\infty} \left(1-\frac{1}{n^2} \right) &=\prod_{n=2}^{\infty}\frac{(n-1)(n+1)}{n^2} \\ &=\lim_{N\to\infty} \prod_{n=2}^{N}\frac{n-1}{n} \times \prod_{n=2}^{N}\frac{n+1}{n} \\ &= \lim_{N\to\infty} \left\lbrack {\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \cdots \times \frac{N-1}{N}} \right\rbrack \times \left\lbrack {\frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} \times \cdots \times \frac{N}{N-1} \times \frac{N+1}{N}} \right\rbrack \\ &= \lim_{N\to\infty} \left\lbrack \frac{1}{2} \right\rbrack \times \left\lbrack \frac{N+1}{N} \right\rbrack \\ &= \frac{1}{2}\times \lim_{N\to\infty} \left\lbrack \frac{N+1}{N} \right\rbrack \\ &=\frac{1}{2}. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)