Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Temporal logic
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Syntax === The language of the logic first published in ''Podstawy Analizy Metodologicznej KanonΓ³w Milla'' (''The Foundations of a Methodological Analysis of Millβs Methods'') consisted of:<ref name=":0" /> * first-order logic operators βΒ¬β, ββ§β, ββ¨β, βββ, ββ‘β, βββ and βββ * realization operator U * functional symbol Ξ΄ * propositional variables p<sub>1</sub>,p<sub>2</sub>,p<sub>3</sub>,... * variables denoting time moments t<sub>1</sub>,t<sub>2</sub>,t<sub>3</sub>,... * variables denoting time intervals n<sub>1</sub>,n<sub>2</sub>,n<sub>3</sub>,... The set of terms (denoted by S) is constructed as follows: * variables denoting time moments or intervals are terms * if <math>\tau \in S</math> and <math>\epsilon</math> is a time interval variable, then <math>\delta(\tau, \epsilon) \in S</math> The set of formulas (denoted by For) is constructed as follows:<ref name="Tkaczyk 2019 259β276"/> * all first-order logic formulas are in <math>For</math> * if <math>\tau \in S</math> and <math>\phi</math> is a propositional variable, then <math>U_{\tau}(\phi) \in For</math> * if <math>\phi \in For</math>, then <math>\neg \phi \in For</math> * if <math>\phi, \psi \in For</math> and <math>\circ \in \{\wedge, \vee, \rightarrow, \equiv\}</math>, then <math>\phi \circ \psi \in For</math> * if <math>\phi \in For</math> and <math>Q \in \{\forall, \exists\}</math> and Ο is a propositional, moment or interval variable, then <math>Q_{\upsilon}\phi \in For</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)