Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Tetration
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Examples == Because of the extremely fast growth of tetration, most values in the following table are too large to write in [[scientific notation]]. In these cases, iterated exponential notation is used to express them in base 10. The values containing a decimal point are approximate. Usually, the limit that can be calculated in a numerical calculation program such as [[Wolfram Alpha]] is 3ββ4, and the number of digits up to 3ββ5 can be expressed. {| class="wikitable" |+Examples of tetration !scope="col"| <math>x</math> !scope="col"| <math>{}^{2}x</math> !scope="col"| <math>{}^{3}x</math> !scope="col"| <math>{}^{4}x</math> !scope="col"| <math>{}^{5}x</math> !scope="col"| <math>{}^{6}x</math> !scope="col"| <math>{}^{7}x</math> |- align=right !scope="row"| 1 | 1 | 1 | 1 | 1 | 1 | 1 |- align=right !scope="row"| 2 | 4 (2{{sup|2}}) | 16 (2{{sup|4}}) | 65,536 (2{{sup|16}}) | 2.00353 Γ 10{{sup|19,728}} | <math>\exp_{10}^3(4.29508)</math> (10{{sup|6.03123Γ10{{sup|19,727}}}}) | <math>\exp_{10}^4(4.29508)</math> |- align=right !scope="row"| 3 | 27 (3{{sup|3}}) | 7,625,597,484,987 (3{{sup|27}}) | 1.25801 Γ 10{{sup|3,638,334,640,024}} <ref name="tdm">DiModica, Thomas. [https://github.com/TediusTimmy/CiteMyself/blob/trunk/Tetration/README.md Tetration Values.] Retrieved 15 October 2023.</ref> | <math>\exp_{10}^4(1.09902)</math> (10{{sup|6.00225Γ10{{sup|3,638,334,640,023}}}}) | <math>\exp_{10}^5(1.09902)</math> | <math>\exp_{10}^6(1.09902)</math> |- align=right !scope="row"| 4 | 256 (4{{sup|4}}) | 1.34078 Γ 10{{sup|154}} (4{{sup|256}}) | <math>\exp_{10}^3(2.18726)</math> (10{{sup|8.0723Γ10{{sup|153}}}}) | <math>\exp_{10}^4(2.18726)</math> | <math>\exp_{10}^5(2.18726)</math> | <math>\exp_{10}^6(2.18726)</math> |- align=right !scope="row"| 5 | 3,125 (5{{sup|5}}) | 1.91101 Γ 10{{sup|2,184}} (5{{sup|3,125}}) | <math>\exp_{10}^3(3.33928)</math> (10{{sup|1.33574Γ10{{sup|2,184}}}}) | <math>\exp_{10}^4(3.33928)</math> | <math>\exp_{10}^5(3.33928)</math> | <math>\exp_{10}^6(3.33928)</math> |- align=right !scope="row"| 6 | 46,656 (6{{sup|6}}) | 2.65912 Γ 10{{sup|36,305}} (6{{sup|46,656}}) | <math>\exp_{10}^3(4.55997)</math> (10{{sup|2.0692Γ10{{sup|36,305}}}}) | <math>\exp_{10}^4(4.55997)</math> | <math>\exp_{10}^5(4.55997)</math> | <math>\exp_{10}^6(4.55997)</math> |- align=right !scope="row"| 7 | 823,543 (7{{sup|7}}) | 3.75982 Γ 10{{sup|695,974}} (7<sup>823,543</sup>) | <math>\exp_{10}^3(5.84259)</math> (3.17742 Γ 10{{sup|695,974}} digits) | <math>\exp_{10}^4(5.84259)</math> | <math>\exp_{10}^5(5.84259)</math> | <math>\exp_{10}^6(5.84259)</math> |- align=right !scope="row"| 8 | 16,777,216 (8{{sup|8}}) | 6.01452 Γ 10{{sup|15,151,335}} | <math>\exp_{10}^3(7.18045)</math> (5.43165 Γ 10{{sup|15,151,335}} digits) | <math>\exp_{10}^4(7.18045)</math> | <math>\exp_{10}^5(7.18045)</math> | <math>\exp_{10}^6(7.18045)</math> |- align=right !scope="row"| 9 | 387,420,489 (9{{sup|9}}) | 4.28125 Γ 10{{sup|369,693,099}} | <math>\exp_{10}^3(8.56784)</math> (4.08535 Γ 10{{sup|369,693,099}} digits) | <math>\exp_{10}^4(8.56784)</math> | <math>\exp_{10}^5(8.56784)</math> | <math>\exp_{10}^6(8.56784)</math> |- align=right !scope="row"| 10 | 10,000,000,000 (10{{sup|10}}) | 10{{sup|10,000,000,000}} | <math>\exp_{10}^4(1)</math> (10{{sup|10,000,000,000}} + 1 digits) | <math>\exp_{10}^5(1)</math> | <math>\exp_{10}^6(1)</math> | <math>\exp_{10}^7(1)</math> |} '''Remark:''' If {{mvar|x}} does not differ from 10 by orders of magnitude, then for all <math>k \ge3,~ ^mx =\exp_{10}^k z,~z>1 ~\Rightarrow~^{m+1}x = \exp_{10}^{k+1} z' \text{ with }z' \approx z</math>. For example, <math>z - z' < 1.5\cdot 10^{-15} \text{ for } x = 3 = k,~ m = 4</math> in the above table, and the difference is even smaller for the following rows.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)