Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Time complexity
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Polylogarithmic time == An algorithm is said to run in '''[[polylogarithmic function|polylogarithmic]] time''' if its time <math>T(n)</math> is <math>O\bigl((\log n)^k\bigr)</math> for some constant {{mvar|k}}. Another way to write this is <math>O(\log^kn)</math>. For example, [[Matrix chain multiplication|matrix chain ordering]] can be solved in polylogarithmic time on a [[parallel random-access machine]],<ref>{{cite journal | last1 = Bradford | first1 = Phillip G. | last2 = Rawlins | first2 = Gregory J. E. | last3 = Shannon | first3 = Gregory E. | doi = 10.1137/S0097539794270698 | issue = 2 | journal = [[SIAM Journal on Computing]] | mr = 1616556 | pages = 466β490 | title = Efficient matrix chain ordering in polylog time | volume = 27 | year = 1998}}</ref> and [[Graph (discrete mathematics)|a graph]] can be [[Planarity testing|determined to be planar]] in a [[Dynamic connectivity|fully dynamic]] way in <math>O(\log^3n)</math> time per insert/delete operation.<ref>{{cite conference | last1 = Holm | first1 = Jacob | last2 = Rotenberg | first2 = Eva | editor1-last = Makarychev | editor1-first = Konstantin | editor2-last = Makarychev | editor2-first = Yury | editor3-last = Tulsiani | editor3-first = Madhur | editor4-last = Kamath | editor4-first = Gautam | editor5-last = Chuzhoy | editor5-first = Julia | editor5-link = Julia Chuzhoy | arxiv = 1911.03449 | contribution = Fully-dynamic planarity testing in polylogarithmic time | doi = 10.1145/3357713.3384249 | pages = 167β180 | publisher = Association for Computing Machinery | title = Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020 | year = 2020| isbn = 978-1-4503-6979-4 }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)