Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Transcendental number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Conjectured transcendental numbers== Numbers which have yet to be proven to be either transcendental or algebraic: * Most nontrivial combinations of two or more transcendental numbers are themselves not known to be transcendental or even irrational: {{mvar|eπ}}, {{math|''e'' + ''π''}}, {{mvar|π}}<sup>{{mvar|π}}</sup>, {{math|''e''<sup>''e''</sup>}}, {{math|''π''<sup>''e''</sup>}}, {{math|''π''{{sup|{{sqrt|2}}}}}}, {{math|''e''<sup>''π''<sup>2</sup></sup>}}. It has been shown that both {{math|''e'' + ''π''}} and {{math|''π''/''e''}} do not satisfy any [[polynomial equation]] of degree {{math|<math>\leq 8</math>}} and integer coefficients of average size 10<sup>9</sup>.<ref>{{Cite journal |last=Bailey |first=David H. |date=1988 |title=Numerical Results on the Transcendence of Constants Involving $\pi, e$, and Euler's Constant |url=https://www.jstor.org/stable/2007931 |journal=Mathematics of Computation |volume=50 |issue=181 |pages=275–281 |doi=10.2307/2007931 |jstor=2007931 |issn=0025-5718}}</ref><ref>{{Cite web |last=Weisstein |first=Eric W. |title=e |url=https://mathworld.wolfram.com/e.html |access-date=2023-08-12 |website=mathworld.wolfram.com |language=en}}</ref> At least one of the numbers {{math|''e''<sup>''e''</sup>}} and {{math|''e''<sup>''e''<sup>2</sup></sup>}} is transcendental.<ref>{{Cite journal |last=Brownawell |first=W. Dale |date=1974-02-01 |title=The algebraic independence of certain numbers related by the exponential function |journal=Journal of Number Theory |volume=6 |issue=1 |pages=22–31 |doi=10.1016/0022-314X(74)90005-5 |issn=0022-314X|doi-access=free |bibcode=1974JNT.....6...22B }}</ref> [[Schanuel's conjecture]] would imply that all of the above numbers are transcendental and [[Algebraic independence|algebraically independent]].<ref name=":12">{{Cite web |last=Waldschmidt |first=Michel |date=2021 |title=Schanuel's Conjecture: algebraic independence of transcendental numbers |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/SchanuelEn.pdf}}</ref> * The [[Euler–Mascheroni constant]] {{mvar|γ}}'':'' In 2010 it has been shown that an infinite list of [[Euler–Lehmer constants|Euler-Lehmer constants]] (which includes {{math|{{var|γ}}/4}}) contains at most one algebraic number.<ref>{{Cite journal |last1=Murty |first1=M. Ram |last2=Saradha |first2=N. |date=2010-12-01 |title=Euler–Lehmer constants and a conjecture of Erdös |journal=[[Journal of Number Theory]] |language=en |volume=130 |issue=12 |pages=2671–2682 |doi=10.1016/j.jnt.2010.07.004 |doi-access=free |issn=0022-314X}}</ref><ref>{{Cite journal |last1=Murty |first1=M. Ram |last2=Zaytseva |first2=Anastasia |date=2013-01-01 |title=Transcendence of generalized Euler constants |journal=[[The American Mathematical Monthly]] |volume=120 |issue=1 |pages=48–54 |doi=10.4169/amer.math.monthly.120.01.048 |s2cid=20495981 |issn=0002-9890}}</ref> In 2012 it was shown that at least one of {{mvar|γ}} and the [[Gompertz constant]] {{mvar|δ}} is transcendental.<ref>{{Cite journal |last=Rivoal |first=Tanguy |date=2012 |title=On the arithmetic nature of the values of the gamma function, Euler's constant, and Gompertz's constant|journal=Michigan Mathematical Journal |language=en |volume=61 |issue=2 |pages=239–254 |doi=10.1307/mmj/1339011525 |doi-access=free |issn=0026-2285 |url=https://projecteuclid.org/euclid.mmj/1339011525}}</ref> * The values of the [[Riemann zeta function]] {{math|''ζ''(n)}} at odd positive integers <math>n\geq3</math>; in particular [[Apéry's constant]] {{math|''ζ''(3)}}, which is known to be irrational. For the other numbers {{math|''ζ''(5), ''ζ''(7), ''ζ''(9), ...}} even this is not known. * The values of the [[Dirichlet beta function]] {{math|''β''(n)}} at even positive integers <math>n\geq2</math>; in particular [[Catalan's constant|Catalan's Constant]] {{math|''β''(2)}}. (none of them are known to be irrational).<ref>{{Cite journal |last1=Rivoal |first1=T. |last2=Zudilin |first2=W. |date=2003-08-01 |title=Diophantine properties of numbers related to Catalan's constant |url=https://doi.org/10.1007/s00208-003-0420-2 |journal=Mathematische Annalen |language=en |volume=326 |issue=4 |pages=705–721 |doi=10.1007/s00208-003-0420-2 |issn=1432-1807 |s2cid=59328860 |hdl-access=free |hdl=1959.13/803688}}</ref> * Values of the [[Gamma function|Gamma Function]] {{math|''Γ''(1/n)}} for positive integers <math>n=5</math> and <math>n\geq7</math> are not known to be irrational, let alone transcendental.<ref name=":0">{{cite web |title=Mathematical constants |url=https://www.cambridge.org/us/academic/subjects/mathematics/recreational-mathematics/mathematical-constants |access-date=2022-09-22 |website=Cambridge University Press |language=en |department=Mathematics (general)}}</ref><ref name=":4">{{Cite web |last=Waldschmidt |first=Michel |date=2022 |title=Transcendental Number Theory: recent results and open problems. |url=https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/TNTOpenPbs |website=Michel Waldschmidt}}</ref> For <math>n\geq2</math> at least one the numbers {{math|''Γ''(1/n)}} and {{math|''Γ''(2/n)}} is transcendental.<ref name=":3" /> * Any number given by some kind of [[Limit (mathematics)|limit]] that is not obviously algebraic.<ref name=":4" />
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)