Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Transverse wave
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Power in a transverse wave in string === (Let the linear mass density of the string be ΞΌ.) The kinetic energy of a mass element in a transverse wave is given by: <math display="block"> dK = \frac 1 2 \ dm \ v_y^2 = \frac12 \ \mu dx \ A^2 \omega^2 \cos^2 \left(\frac{2 \pi x}{\lambda} - \omega t\right)</math> In one wavelength, kinetic energy <math display="block"> K = \frac 1 2 \mu A ^2 \omega^2 \int ^\lambda _0 \cos^2 \left(\frac{2 \pi x}{\lambda} - \omega t\right) dx = \frac14 \mu A^2 \omega^2 \lambda</math> Using [[Hooke's law]] the potential energy in mass element <math display="block"> dU = \frac 1 2 \ dm \omega ^ 2 \ y ^ 2 = \frac 1 2 \ \mu dx \omega ^ 2 \ A^2 \sin^2 \left(\frac{2 \pi x}{\lambda} - \omega t\right)</math> And the potential energy for one wavelength <math display="block"> U = \frac 1 2 \mu A ^2 \omega^2 \int ^\lambda _0 \sin^2 \left(\frac{2 \pi x}{\lambda} - \omega t\right) dx = \frac 1 4 \mu A^2 \omega^2 \lambda</math> So, total energy in one wavelength <math display="inline"> K + U = \frac 1 2 \mu A^2 \omega^2 \lambda</math> Therefore average power is <math display="inline"> \frac 1 2 \mu A^2 \omega^2 v_x</math><ref>{{Cite web|title=16.4 Energy and Power of a Wave - University Physics Volume 1 {{!}} OpenStax|url=https://openstax.org/books/university-physics-volume-1/pages/16-4-energy-and-power-of-a-wave|access-date=2022-01-28|website=openstax.org|date=19 September 2016 |language=en}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)