Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ultrafilter
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Ultrafilter on the power set of a set== {{Main|Ultrafilter (set theory)}} Given an arbitrary set <math>X,</math> its [[power set]] <math>{\mathcal P}(X),</math> ordered by [[set inclusion]], is always a Boolean algebra; hence the results of the above section apply. An (ultra)filter on <math>{\mathcal P}(X)</math> is often called just an "(ultra)filter on <math>X</math>".<ref name="notation warning" group=note/> Given an arbitrary set <math>X,</math> an ultrafilter on <math>{\mathcal P}(X)</math> is a set <math>\mathcal U</math> consisting of subsets of <math>X</math> such that: #The empty set is not an element of <math>\mathcal U</math>. #If <math>A</math> is an element of <math>\mathcal U</math> then so is every superset <math>B\supset A</math>. #If <math>A</math> and <math>B</math> are elements of <math>\mathcal U</math> then so is the [[Intersection (set theory)|intersection]] <math>A\cap B</math>. #If <math>A</math> is a subset of <math>X,</math> then either<ref name="exclusive or" group="note">Properties 1 and 3 imply that <math>A</math> and <math>X \setminus A</math> cannot {{em|both}} be elements of <math>U.</math></ref> <math>A</math> or its complement <math>X \setminus A</math> is an element of <math>\mathcal U</math>. Equivalently, a family <math>\mathcal U</math> of subsets of <math>X</math> is an ultrafilter if and only if for any finite collection <math>\mathcal F</math> of subsets of <math>X</math>, there is some <math>x\in X</math> such that <math>\mathcal U\cap\mathcal F=F_x\cap\mathcal F</math> where <math>F_x=\{Y\subseteq X : x \in Y\}</math> is the principal ultrafilter seeded by <math>x</math>. In other words, an ultrafilter may be seen as a family of sets which "locally" resembles a principal ultrafilter.{{cn|date=December 2023}} An equivalent form of a given <math>\mathcal U</math> is a [[2-valued morphism]], a function <math>m</math> on <math>{\mathcal P}(X)</math> defined as <math>m(A) = 1</math> if <math>A</math> is an element of <math>\mathcal U</math> and <math>m(A) = 0</math> otherwise. Then <math>m</math> is [[finitely additive]], and hence a {{em|[[Content (measure theory)|content]]}} on <math>{\mathcal P}(X),</math> and every property of elements of <math>X</math> is either true [[almost everywhere]] or false almost everywhere. However, <math>m</math> is usually not {{em|countably additive}}, and hence does not define a [[Measure (mathematics)|measure]] in the usual sense. For a filter <math>\mathcal F</math> that is not an ultrafilter, one can define <math>m(A) = 1</math> if <math>A \in \mathcal F</math> and <math>m(A) = 0</math> if <math>X \setminus A \in \mathcal F,</math> leaving <math>m</math> undefined elsewhere.<ref name="Kruckman.2012">{{Cite web |title=Notes on Ultrafilters |url=https://math.berkeley.edu/~kruckman/ultrafilters.pdf|author=Alex Kruckman|date=November 7, 2012|publisher=Berkeley Math Toolbox Seminar}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)