Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Uncertainty principle
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Proof of the Kennard inequality using wave mechanics=== We are interested in the [[variance]]s of position and momentum, defined as <math display="block">\sigma_x^2 = \int_{-\infty}^\infty x^2 \cdot |\psi(x)|^2 \, dx - \left( \int_{-\infty}^\infty x \cdot |\psi(x)|^2 \, dx \right)^2</math> <math display="block">\sigma_p^2 = \int_{-\infty}^\infty p^2 \cdot |\varphi(p)|^2 \, dp - \left( \int_{-\infty}^\infty p \cdot |\varphi(p)|^2 \, dp \right)^2~.</math> [[Without loss of generality]], we will assume that the [[expected value|means]] vanish, which just amounts to a shift of the origin of our coordinates. (A more general proof that does not make this assumption is given below.) This gives us the simpler form <math display="block">\sigma_x^2 = \int_{-\infty}^\infty x^2 \cdot |\psi(x)|^2 \, dx</math> <math display="block">\sigma_p^2 = \int_{-\infty}^\infty p^2 \cdot |\varphi(p)|^2 \, dp~.</math> The function <math>f(x) = x \cdot \psi(x)</math> can be interpreted as a [[vector space|vector]] in a [[function space]]. We can define an [[inner product]] for a pair of functions ''u''(''x'') and ''v''(''x'') in this vector space: <math display="block">\langle u \mid v \rangle = \int_{-\infty}^\infty u^*(x) \cdot v(x) \, dx,</math> where the asterisk denotes the [[complex conjugate]]. With this inner product defined, we note that the variance for position can be written as <math display="block">\sigma_x^2 = \int_{-\infty}^\infty |f(x)|^2 \, dx = \langle f \mid f \rangle ~.</math> We can repeat this for momentum by interpreting the function <math>\tilde{g}(p)=p \cdot \varphi(p)</math> as a vector, but we can also take advantage of the fact that <math>\psi(x)</math> and <math>\varphi(p)</math> are Fourier transforms of each other. We evaluate the inverse Fourier transform through [[integration by parts]]: <math display="block">\begin{align} g(x) &= \frac{1}{\sqrt{2 \pi \hbar}} \cdot \int_{-\infty}^\infty \tilde{g}(p) \cdot e^{ipx/\hbar} \, dp \\ &= \frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^\infty p \cdot \varphi(p) \cdot e^{ipx/\hbar} \, dp \\ &= \frac{1}{2 \pi \hbar} \int_{-\infty}^\infty \left[ p \cdot \int_{-\infty}^\infty \psi(\chi) e^{-ip\chi/\hbar} \, d\chi \right] \cdot e^{ipx/\hbar} \, dp \\ &= \frac{i}{2 \pi} \int_{-\infty}^\infty \left[ \cancel{ \left. \psi(\chi) e^{-ip\chi/\hbar} \right|_{-\infty}^\infty } - \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} e^{-ip\chi/\hbar} \, d\chi \right] \cdot e^{ipx/\hbar} \, dp \\ &= -i \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} \left[ \frac{1}{2 \pi}\int_{-\infty}^\infty \, e^{ip(x - \chi)/\hbar} \, dp \right]\, d\chi\\ &= -i \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} \left[ \delta\left(\frac{x - \chi }{\hbar}\right) \right]\, d\chi\\ &= -i \hbar \int_{-\infty}^\infty \frac{d\psi(\chi)}{d\chi} \left[ \delta\left(x - \chi \right) \right]\, d\chi\\ &= -i \hbar \frac{d\psi(x)}{dx} \\ &= \left( -i \hbar \frac{d}{dx} \right) \cdot \psi(x) , \end{align}</math> where <math>v=\frac{\hbar}{-ip}e^{-ip\chi/\hbar}</math> in the integration by parts, the cancelled term vanishes because the wave function vanishes at both infinities and <math>|e^{-ip\chi/\hbar}|=1</math>, and then use the [[Dirac delta function#History|Dirac delta function]] which is valid because <math>\dfrac{d\psi(\chi)}{d\chi}</math> does not depend on ''p'' . The term <math display="inline">-i \hbar \frac{d}{dx}</math> is called the [[momentum operator]] in position space. Applying [[Plancherel theorem|Plancherel's theorem]], we see that the variance for momentum can be written as <math display="block">\sigma_p^2 = \int_{-\infty}^\infty |\tilde{g}(p)|^2 \, dp = \int_{-\infty}^\infty |g(x)|^2 \, dx = \langle g \mid g \rangle.</math> The [[Cauchy–Schwarz inequality]] asserts that <math display="block">\sigma_x^2 \sigma_p^2 = \langle f \mid f \rangle \cdot \langle g \mid g \rangle \ge |\langle f \mid g \rangle|^2 ~.</math> The [[modulus squared]] of any complex number ''z'' can be expressed as <math display="block">|z|^{2} = \Big(\text{Re}(z)\Big)^{2}+\Big(\text{Im}(z)\Big)^{2} \geq \Big(\text{Im}(z)\Big)^{2} = \left(\frac{z-z^{\ast}}{2i}\right)^{2}. </math> we let <math>z=\langle f|g\rangle</math> and <math>z^{*}=\langle g\mid f\rangle</math> and substitute these into the equation above to get <math display="block">|\langle f\mid g\rangle|^2 \geq \left(\frac{\langle f\mid g\rangle-\langle g \mid f \rangle}{2i}\right)^2 ~.</math> All that remains is to evaluate these inner products. <math display="block">\begin{align} \langle f\mid g\rangle-\langle g\mid f\rangle &= \int_{-\infty}^\infty \psi^*(x) \, x \cdot \left(-i \hbar \frac{d}{dx}\right) \, \psi(x) \, dx - \int_{-\infty}^\infty \psi^*(x) \, \left(-i \hbar \frac{d}{dx}\right) \cdot x \, \psi(x) \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty \psi^*(x) \left[ \left(-x \cdot \frac{d\psi(x)}{dx}\right) + \frac{d(x \psi(x))}{dx} \right] \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty \psi^*(x) \left[ \left(-x \cdot \frac{d\psi(x)}{dx}\right) + \psi(x) + \left(x \cdot \frac{d\psi(x)}{dx}\right)\right] \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty \psi^*(x) \psi(x) \, dx \\ &= i \hbar \cdot \int_{-\infty}^\infty |\psi(x)|^2 \, dx \\ &= i \hbar \end{align}</math> Plugging this into the above inequalities, we get <math display="block">\sigma_x^2 \sigma_p^2 \ge |\langle f \mid g \rangle|^2 \ge \left(\frac{\langle f\mid g\rangle-\langle g\mid f\rangle}{2i}\right)^2 = \left(\frac{i \hbar}{2 i}\right)^2 = \frac{\hbar^2}{4}</math> and taking the square root <math display="block">\sigma_x \sigma_p \ge \frac{\hbar}{2}~.</math> with equality if and only if ''p'' and ''x'' are linearly dependent. Note that the only ''physics'' involved in this proof was that <math>\psi(x)</math> and <math>\varphi(p)</math> are wave functions for position and momentum, which are Fourier transforms of each other. A similar result would hold for ''any'' pair of conjugate variables.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)