Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Universal property
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== Below are a few examples, to highlight the general idea. The reader can construct numerous other examples by consulting the articles mentioned in the introduction. ===Tensor algebras=== Let <math>\mathcal{C}</math> be the [[category of vector spaces]] '''<math>K</math>-Vect''' over a [[field (mathematics)|field]] <math>K</math> and let <math>\mathcal{D}</math> be the category of [[algebra over a field|algebras]] '''<math>K</math>-Alg''' over <math>K</math> (assumed to be [[unital algebra|unital]] and [[associative algebra|associative]]). Let :<math>U</math> : '''<math>K</math>-Alg''' → '''<math>K</math>-Vect''' be the [[forgetful functor]] which assigns to each algebra its underlying vector space. Given any [[vector space]] <math>V</math> over <math>K</math> we can construct the [[tensor algebra]] <math>T(V)</math>. The tensor algebra is characterized by the fact: :βAny linear map from <math>V</math> to an algebra <math>A</math> can be uniquely extended to an [[algebra homomorphism]] from <math>T(V)</math> to <math>A</math>.β This statement is an initial property of the tensor algebra since it expresses the fact that the pair <math>(T(V),i)</math>, where <math>i:V \to U(T(V))</math> is the inclusion map, is a universal morphism from the vector space <math>V</math> to the functor <math>U</math>. Since this construction works for any vector space <math>V</math>, we conclude that <math>T</math> is a functor from '''<math>K</math>-Vect''' to '''<math>K</math>-Alg'''. This means that <math>T</math> is ''left adjoint'' to the forgetful functor <math>U</math> (see the section below on [[#Relation to adjoint functors|relation to adjoint functors]]). ===Products=== A [[categorical product]] can be characterized by a universal construction. For concreteness, one may consider the [[Cartesian product]] in '''[[Set (category theory)|Set]]''', the [[direct product]] in '''[[Grp (category theory)|Grp]]''', or the [[product topology]] in '''[[Top (category theory)|Top]]''', where products exist. Let <math>X</math> and <math>Y</math> be objects of a category <math>\mathcal{C}</math> with finite products. The product of <math>X</math> and <math>Y</math> is an object <math>X</math> × <math>Y</math> together with two morphisms :<math>\pi_1</math> : <math>X \times Y \to X</math> :<math>\pi_2</math> : <math>X \times Y \to Y</math> such that for any other object <math>Z</math> of <math>\mathcal{C}</math> and morphisms <math>f: Z \to X</math> and <math>g: Z \to Y</math> there exists a unique morphism <math>h: Z \to X \times Y</math> such that <math>f = \pi_1 \circ h</math> and <math>g = \pi_2 \circ h</math>. To understand this characterization as a universal property, take the category <math>\mathcal{D}</math> to be the [[product category]] <math>\mathcal{C} \times \mathcal{C}</math> and define the [[diagonal functor]] : <math>\Delta: \mathcal{C} \to \mathcal{C} \times \mathcal{C}</math> by <math>\Delta(X) = (X, X)</math> and <math>\Delta(f: X \to Y) = (f, f)</math>. Then <math>(X \times Y, (\pi_1, \pi_2))</math> is a universal morphism from <math>\Delta</math> to the object <math>(X, Y)</math> of <math>\mathcal{C} \times \mathcal{C}</math>: if <math>(f, g)</math> is any morphism from <math>(Z, Z)</math> to <math>(X, Y)</math>, then it must equal a morphism <math>\Delta(h: Z \to X \times Y) = (h,h)</math> from <math>\Delta(Z) = (Z, Z)</math> to <math>\Delta(X \times Y) = (X \times Y, X \times Y)</math> followed by <math>(\pi_1, \pi_2)</math>. As a commutative diagram: [[File:Universal-property-products.svg|center|484x484px|Commutative diagram showing how products have a universal property.]]For the example of the Cartesian product in '''Set''', the morphism <math>(\pi_1, \pi_2)</math> comprises the two projections <math>\pi_1(x,y) = x</math> and <math>\pi_2(x,y) = y</math>. Given any set <math>Z</math> and functions <math>f,g</math> the unique map such that the required diagram commutes is given by <math>h = \langle x,y\rangle(z) = (f(z), g(z))</math>.<ref>{{Cite arXiv |last1=Fong |first1=Brendan |last2=Spivak |first2=David I. |date=2018-10-12 |title=Seven Sketches in Compositionality: An Invitation to Applied Category Theory |class=math.CT |eprint=1803.05316 }}</ref> ===Limits and colimits=== Categorical products are a particular kind of [[limit (category theory)|limit]] in category theory. One can generalize the above example to arbitrary limits and colimits. Let <math>\mathcal{J}</math> and <math>\mathcal{C}</math> be categories with <math>\mathcal{J}</math> a [[small category|small]] [[index category]] and let <math>\mathcal{C}^\mathcal{J}</math> be the corresponding [[functor category]]. The ''[[diagonal functor]]'' :<math>\Delta: \mathcal{C} \to \mathcal{C}^\mathcal{J}</math> is the functor that maps each object <math>N</math> in <math>\mathcal{C}</math> to the constant functor <math>\Delta(N): \mathcal{J} \to \mathcal{C}</math> (i.e. <math>\Delta(N)(X) = N</math> for each <math>X</math> in <math>\mathcal{J}</math> and <math>\Delta(N)(f) = 1_N</math> for each <math>f: X \to Y</math> in <math>\mathcal{J}</math>) and each morphism <math>f : N \to M</math> in <math>\mathcal{C}</math> to the natural transformation <math>\Delta(f):\Delta(N)\to\Delta(M)</math> in <math>\mathcal{C}^{\mathcal{J}}</math> defined as, for every object <math>X</math> of <math>\mathcal{J}</math>, the component <math display="block">\Delta(f)(X):\Delta(N)(X)\to\Delta(M)(X) = f:N\to M</math> at <math>X</math>. In other words, the natural transformation is the one defined by having constant component <math>f:N\to M</math> for every object of <math>\mathcal{J}</math>. Given a functor <math>F: \mathcal{J} \to \mathcal{C}</math> (thought of as an object in <math>\mathcal{C}^\mathcal{J}</math>), the ''limit'' of <math>F</math>, if it exists, is nothing but a universal morphism from <math>\Delta</math> to <math>F</math>. Dually, the ''colimit'' of <math>F</math> is a universal morphism from <math>F</math> to <math>\Delta</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)