Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Van der Waerden's theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Proof in the case of ''W''(2, 3) === {| class="wikitable floatright" style="text-align:right |+ ''W''(2, 3) table ! ''b'' !! colspan="5" | ''c''(''n''): color of integers |- ! rowspan="2" | 0 | 1 || 2 || 3 || 4 || 5 |- | '''<span style="color:red;">R</span>''' || '''<span style="color:red;">R</span>''' || '''<span style="color:blue;">B</span>''' || '''<span style="color:red;">R</span>''' || '''<span style="color:blue;">B</span>''' |- ! rowspan="2" | 1 | 6 || 7 || 8 || 9 || 10 |- | '''<span style="color:blue;">B</span>''' || '''<span style="color:red;">R</span>''' || '''<span style="color:red;">R</span>''' || '''<span style="color:blue;">B</span>''' || '''<span style="color:red;">R</span>''' |- ! β¦ | colspan="5" | β¦ |- ! rowspan="2" | 64 | 321 || 322 || 323 || 324 || 325 |- | '''<span style="color:red;">R</span>''' || '''<span style="color:blue;">B</span>''' || '''<span style="color:red;">R</span>''' || '''<span style="color:blue;">B</span>''' || '''<span style="color:red;">R</span>''' |} We will prove the special case mentioned above, that ''W''(2, 3) β€ 325. Let ''c''(''n'') be a coloring of the integers {1, ..., 325}. We will find three elements of {1, ..., 325} in arithmetic progression that are the same color. Divide {1, ..., 325} into the 65 blocks {1, ..., 5}, {6, ..., 10}, ... {321, ..., 325}, thus each block is of the form {5''b'' + 1, ..., 5''b'' + 5} for some ''b'' in {0, ..., 64}. Since each integer is colored either <span style="color:red;">red</span> or <span style="color:blue;">blue</span>, each block is colored in one of 32 different ways. By the [[pigeonhole principle]], there are two blocks among the first 33 blocks that are colored identically. That is, there are two integers ''b''<sub>1</sub> and ''b''<sub>2</sub>, both in {0,...,32}, such that : ''c''(5''b''<sub>1</sub> + ''k'') = ''c''(5''b''<sub>2</sub> + ''k'') for all ''k'' in {1, ..., 5}. Among the three integers 5''b''<sub>1</sub> + 1, 5''b''<sub>1</sub> + 2, 5''b''<sub>1</sub> + 3, there must be at least two that are of the same color. (The [[pigeonhole principle]] again.) Call these 5''b''<sub>1</sub> + ''a''<sub>1</sub> and 5''b''<sub>1</sub> + ''a''<sub>2</sub>, where the ''a''<sub>''i''</sub> are in {1,2,3} and ''a''<sub>1</sub> < ''a''<sub>2</sub>. Suppose (without loss of generality) that these two integers are both <span style="color:red;">red</span>. (If they are both <span style="color:blue;">blue</span>, just exchange '<span style="color:red;">red</span>' and '<span style="color:blue;">blue</span>' in what follows.) Let ''a''<sub>3</sub> = 2''a''<sub>2</sub> − ''a''<sub>1</sub>. If 5''b''<sub>1</sub> + ''a''<sub>3</sub> is <span style="color:red;">red</span>, then we have found our arithmetic progression: 5''b''<sub>1</sub> + ''a''<sub>''i''</sub> are all <span style="color:red;">red</span>. Otherwise, 5''b''<sub>1</sub> + ''a''<sub>3</sub> is <span style="color:blue;">blue</span>. Since ''a''<sub>3</sub> β€ 5, 5''b''<sub>1</sub> + ''a''<sub>3</sub> is in the ''b''<sub>1</sub> block, and since the ''b''<sub>2</sub> block is colored identically, 5''b''<sub>2</sub> + ''a''<sub>3</sub> is also <span style="color:blue;">blue</span>. Now let ''b''<sub>3</sub> = 2''b''<sub>2</sub> − ''b''<sub>1</sub>. Then ''b''<sub>3</sub> β€ 64. Consider the integer 5''b''<sub>3</sub> + ''a''<sub>3</sub>, which must be β€ 325. What color is it? If it is <span style="color:red;">red</span>, then 5''b''<sub>1</sub> + ''a''<sub>1</sub>, 5''b''<sub>2</sub> + ''a''<sub>2</sub>, and 5''b''<sub>3</sub> + ''a''<sub>3</sub> form a <span style="color:red;">red</span> arithmetic progression. But if it is <span style="color:blue;">blue</span>, then 5''b''<sub>1</sub> + ''a''<sub>3</sub>, 5''b''<sub>2</sub> + ''a''<sub>3</sub>, and 5''b''<sub>3</sub> + ''a''<sub>3</sub> form a <span style="color:blue;">blue</span> arithmetic progression. Either way, we are done.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)