Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Variance
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Examples== ===Exponential distribution=== The [[exponential distribution]] with parameter {{mvar|λ}} > 0 is a continuous distribution whose [[probability density function]] is given by <math display="block">f(x) = \lambda e^{-\lambda x}</math> on the interval {{closed-open|0, β}}. Its mean can be shown to be <math display="block">\operatorname{E}[X] = \int_0^\infty x \lambda e^{-\lambda x} \, dx = \frac{1}{\lambda}.</math> Using [[integration by parts]] and making use of the expected value already calculated, we have: <math display="block">\begin{align} \operatorname{E}\left[X^2\right] &= \int_0^\infty x^2 \lambda e^{-\lambda x} \, dx \\ &= {\left[ -x^2 e^{-\lambda x} \right]}_0^\infty + \int_0^\infty 2 x e^{-\lambda x} \,dx \\ &= 0 + \frac{2}{\lambda}\operatorname{E}[X] \\ &= \frac{2}{\lambda^2}. \end{align}</math> Thus, the variance of {{mvar|X}} is given by <math display="block">\operatorname{Var}(X) = \operatorname{E}\left[X^2\right] - \operatorname{E}[X]^2 = \frac{2}{\lambda^2} - \left(\frac{1}{\lambda}\right)^2 = \frac{1}{\lambda^2}.</math> ===Fair die<!--Singular: die; plural: dice. Don't change-->=== A fair [[dice|six-sided die]] can be modeled as a discrete random variable, {{mvar|X}}, with outcomes 1 through 6, each with equal probability 1/6. The expected value of {{mvar|X}} is <math>(1 + 2 + 3 + 4 + 5 + 6)/6 = 7/2.</math> Therefore, the variance of {{mvar|X}} is <math display="block">\begin{align} \operatorname{Var}(X) &= \sum_{i=1}^6 \frac{1}{6}\left(i - \frac{7}{2}\right)^2 \\[5pt] &= \frac{1}{6}\left((-5/2)^2 + (-3/2)^2 + (-1/2)^2 + (1/2)^2 + (3/2)^2 + (5/2)^2\right) \\[5pt] &= \frac{35}{12} \approx 2.92. \end{align}</math> The general formula for the variance of the outcome, {{mvar|X}}, of an {{nowrap|{{mvar|n}}-sided}} die is <math display="block">\begin{align} \operatorname{Var}(X) &= \operatorname{E}\left(X^2\right) - (\operatorname{E}(X))^2 \\[5pt] &= \frac{1}{n}\sum_{i=1}^n i^2 - \left(\frac{1}{n}\sum_{i=1}^n i\right)^2 \\[5pt] &= \frac{(n + 1)(2n + 1)}{6} - \left(\frac{n + 1}{2}\right)^2 \\[4pt] &= \frac{n^2 - 1}{12}. \end{align}</math> === Commonly used probability distributions === The following table lists the variance for some commonly used probability distributions. {| class="wikitable" |- ! Name of the probability distribution ! Probability distribution function ! Mean ! Variance |- | [[Binomial distribution]] | <math>\Pr\,(X=k) = \binom{n}{k}p^k(1 - p)^{n-k}</math> | <math>np</math> ! <math>np(1 - p)</math> |- | [[Geometric distribution]] | <math>\Pr\,(X=k) = (1 - p)^{k-1}p</math> | <math>\frac{1}{p}</math> ! <math>\frac{(1 - p)}{p^2}</math> |- | [[Normal distribution]] | <math>f\left(x \mid \mu, \sigma^2\right) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2} {\left(\frac{x - \mu}{\sigma}\right)}^2}</math> | <math>\mu</math> ! <math>\sigma^2</math> |- | [[Uniform distribution (continuous)]] | <math>f(x \mid a, b) = \begin{cases} \frac{1}{b - a} & \text{for } a \le x \le b, \\[3pt] 0 & \text{for } x < a \text{ or } x > b \end{cases}</math> | <math>\frac{a + b}{2}</math> ! <math>\frac{(b - a)^2}{12}</math> |- | [[Exponential distribution]] | <math>f(x \mid \lambda) = \lambda e^{-\lambda x}</math> | <math>\frac{1}{\lambda}</math> ! <math>\frac{1}{\lambda^2}</math> |- | [[Poisson distribution]] | <math>f(k \mid \lambda) = \frac{e^{-\lambda}\lambda^{k}}{k!}</math> | <math>\lambda </math> ! <math>\lambda </math> |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)