Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Vertex operator algebra
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==== Axioms ==== These data are required to satisfy the following axioms: * '''Identity.''' For any <math>u\in V\,,\,Y(1,z)u=u</math> and <math>\,Y(u,z)1\in u+zV[[z]]</math>.{{efn|This last axiom can be used to provide a 'field-to-state' map for the state-field correspondence}} * '''Translation.''' <math>T(1)=0</math>, and for any <math>u,v\in V</math>, ::<math>[T,Y(u,z)]v = TY(u,z)v - Y(u,z)Tv = \frac{d}{dz}Y(u,z)v</math> * '''Locality (Jacobi identity, or Borcherds identity).''' For any <math>u,v\in V</math>, there exists a positive [[integer]] {{mvar|N}} such that: ::<math> (z-x)^N Y(u, z) Y(v, x) = (z-x)^N Y(v, x) Y(u, z).</math> ===== Equivalent formulations of locality axiom ===== The locality axiom has several equivalent formulations in the literature, e.g., Frenkel–Lepowsky–Meurman introduced the Jacobi identity: <math>\forall u,v,w\in V</math>, :<math> \begin{aligned}&z^{-1}\delta\left(\frac{x-y}{z}\right)Y(u,x)Y(v,y)w - z^{-1}\delta\left(\frac{-y+x}{z}\right)Y(v,y)Y(u,x)w \\&= y^{-1}\delta\left(\frac{x-z}{y}\right)Y(Y(u,z)v,y)w\end{aligned},</math> where we define the formal delta series by: :<math>\delta\left(\frac{x-y}{z}\right) := \sum_{s \geq 0, r \in \mathbf{Z}} \binom{r}{s} (-1)^s y^{r-s}x^s z^{-r}.</math> Borcherds{{sfn|Borcherds|1986}} initially used the following two identities: for any <math>u,v,w\in V</math> and integers <math> m,n</math> we have :<math>(u_m (v))_n (w) = \sum_{i \geq 0} (-1)^i \binom{m}{i} \left (u_{m-i} (v_{n+i} (w)) - (-1)^m v_{m+n-i} (u_i (w)) \right)</math> and :<math> u_m v=\sum_{i\geq 0}(-1)^{m+i+1}\frac{T^{i}}{i!}v_{m+i}u </math>. He later gave a more expansive version that is equivalent but easier to use: for any <math>u,v,w\in V</math> and integers <math> m,n,q</math> we have :<math>\sum_{i \in \mathbf{Z}} \binom{m}{i} \left(u_{q+i} (v) \right )_{m+n-i} (w) = \sum_{i\in \mathbf{Z}} (-1)^i \binom{q}{i} \left (u_{m+q-i} \left(v_{n+i} (w) \right ) - (-1)^q v_{n+q-i} \left (u_{m+i} (w) \right ) \right)</math> This identity is the same as the Jacobi identity by expanding both sides in all formal variables. Finally, there is a formal function version of locality: For any <math>u,v,w\in V</math>, there is an element :<math>X(u,v,w;z,x) \in V[[z,x]] \left[z^{-1}, x^{-1}, (z-x)^{-1} \right]</math> such that <math>Y(u,z)Y(v,x)w</math> and <math>Y(v,x)Y(u,z)w</math> are the corresponding expansions of <math>X(u,v,w;z,x)</math> in <math>V((z))((x))</math> and <math>V((x))((z))</math>.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)