Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wankel engine
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Chamber volume=== In a Wankel rotary engine, the chamber volume <math>V_k</math> is equivalent to the product of the rotor surface <math>A_k</math> and the rotor path <math>s</math>. The rotor surface <math>A_k</math> is given by the rotor tips' path across the rotor housing and determined by the generating radius <math>R</math>, the rotor width <math>B</math>, and the parallel transfers of the rotor and the inner housing <math>a</math>. Since the rotor has a trochoid ("triangular") shape, the sine of 60 degrees describes the interval at which the rotors get closest to the rotor housing. Therefore, :<math>A_k=2 \cdot B \cdot (R+a) \cdot \sin (60^\circ) = \sqrt 3 \cdot B \cdot (R+a)</math><ref name="Bensinger 1973 p. 64">{{cite book |last1=Bensinger |first1=Wolf-Dieter |title=Rotationskolben-Verbrennungsmotoren |place=Berlin, Heidelberg, New York |date=1973 |isbn=978-3-540-05886-1 |oclc=251737493 |language=de |page=64}}</ref> The rotor path <math>s</math> may be integrated via the eccentricity <math>e</math> as follows: :<math>\sum \, ds= \int_{\alpha= 0^{\circ}}^{\alpha=270^{\circ}} e \cdot \sin \frac {2} 3 \alpha \, d \alpha = 3e</math> Therefore, :<math>V_k= A_k \cdot s = \sqrt 3 \cdot B \cdot (R+a) \cdot 3e</math><ref name="Bensinger 1973 p. 65"/> For convenience, <math>a</math> may be omitted because it is difficult to determine and small:<ref name="Yamamoto 1981 p. 15"/> :<math>V_k= \sqrt 3 \cdot B \cdot R \cdot 3e</math><ref name="Yamamoto 1981 p. 15"/><ref name="Corbat Pawlowski 1973 p. 8">{{cite book |last1=Corbat |first1=Jean Pierre |last2=Pawlowski |first2=Uwe L. |title=Kreiskolbenmotoren des Systems NSU-Wankel ihre Berechnung und Auslegung |place=Basel |date=1973 |isbn=978-3-0348-5974-5 |oclc=913700185 |language=de-CH |page=8 |quote=Formula 56 with k=R/e}}</ref><ref name="Bender Göhlich Springer-Verlag GmbH 2019 p. 126">{{cite book |last1=Bender |first1=Beate |last2=Göhlich |first2=Dietmar |publisher=Springer-Verlag |title=Dubbel Taschenbuch für den Maschinenbau Band 3. |place=Berlin |date=2019 |isbn=978-3-662-59714-9 |oclc=1105131471 |language=de |page=126}}</ref><ref name="Ansdale Keller 1971 p. 79">{{cite book |last1=Ansdale |first1=R.F. |last2=Keller |first2=H. |title=Der Wankelmotor: Konstruktion und Wirkungsweise |place=Stuttgart| publisher=Motorbuch-Verlag |year=1971 |language=de |page=79 formula 6.13}}</ref><ref name="v Manteuffel 1971 pp. 74">{{cite book |last1=v Manteuffel |first1=P. |title=Mechanical Prime Movers |chapter=Rotary Piston Engines |publisher=Macmillan |place=London |year=1971 |isbn=978-1-349-01184-1 |doi=10.1007/978-1-349-01182-7_6 |pages=74}}</ref> A different approach to this is introducing <math>a'</math> as the farthest, and <math>a</math> as the shortest parallel transfer of the rotor and the inner housing and assuming that <math>R_1=R+a</math> and <math>R_2=R+a'</math>. Then, :<math>V_k= \sqrt 3 \cdot B \cdot (2 \cdot R_1+R_2) \cdot e</math> Including the parallel transfers of the rotor and the inner housing provides sufficient accuracy for determining chamber volume.<ref name="Yamamoto 1981 p. 15">{{cite book |last1=Yamamoto |first1=K. |title=Rotary Engine |publisher=Sankaido |year=1981 |isbn=978-99973-41-17-4 |page=15 |quote=Formula 2.27 and 2.30; Yamamoto uses V<sub>h</sub> for V<sub>k</sub>. In this article, V<sub>k</sub> is used for convenience}}</ref><ref name="Bensinger 1973 p. 65"/>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)