Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weierstrass elliptic function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Laurent expansion == Let <math>r:=\min\{{|\lambda}|:0\neq\lambda\in\Lambda\}</math>. Then for <math>0<|z|<r</math> the <math>\wp</math>-function has the following [[Laurent series|Laurent expansion]] <math display="block">\wp(z)=\frac1{z^2}+\sum_{n=1}^\infin (2n+1)G_{2n+2}z^{2n} </math> where <math display="block">G_n=\sum_{0\neq\lambda\in\Lambda}\lambda^{-n}</math> for <math>n \geq 3</math> are so called [[Eisenstein series]].<ref name=":1" /> ==Differential equation== Set <math>g_2=60G_4</math> and <math>g_3=140G_6</math>. Then the <math>\wp</math>-function satisfies the differential equation<ref name=":1" /> <math display="block"> \wp'^2(z) = 4\wp ^3(z)-g_2\wp(z)-g_3.</math> This relation can be verified by forming a linear combination of powers of <math>\wp</math> and <math>\wp'</math> to eliminate the pole at <math>z=0</math>. This yields an entire elliptic function that has to be constant by [[Liouville's theorem (complex analysis)|Liouville's theorem]].<ref name=":1" /> ===Invariants=== [[Image:Gee three real.jpeg|thumb|The real part of the invariant ''g''<sub>3</sub> as a function of the square of the nome ''q'' on the unit disk.]] [[Image:Gee three imag.jpeg|thumb|The imaginary part of the invariant ''g''<sub>3</sub> as a function of the square of the nome ''q'' on the unit disk.]] The coefficients of the above differential equation <math>g_2</math> and <math>g_3</math> are known as the ''invariants''. Because they depend on the lattice <math>\Lambda</math> they can be viewed as functions in <math>\omega_1</math> and <math>\omega_2</math>. The series expansion suggests that <math>g_2</math> and <math>g_3</math> are [[homogeneous function]]s of degree <math>-4</math> and <math>-6</math>. That is<ref name=":0">{{Cite book|last=Apostol, Tom M.|url=https://www.worldcat.org/oclc/2121639|title=Modular functions and Dirichlet series in number theory|date=1976|publisher=Springer-Verlag|isbn=0-387-90185-X|location=New York| pages=14| oclc=2121639}}</ref> <math display="block">g_2(\lambda \omega_1, \lambda \omega_2) = \lambda^{-4} g_2(\omega_1, \omega_2)</math> <math display="block">g_3(\lambda \omega_1, \lambda \omega_2) = \lambda^{-6} g_3(\omega_1, \omega_2)</math> for <math>\lambda \neq 0</math>. If <math>\omega_1</math> and <math>\omega_2</math> are chosen in such a way that <math>\operatorname{Im}\left( \tfrac{\omega_2}{\omega_1} \right)>0 </math>, <math>g_2</math> and <math>g_3</math> can be interpreted as functions on the [[upper half-plane]] <math>\mathbb{H}:=\{z\in\mathbb{C}:\operatorname{Im}(z)>0\}</math>. Let <math>\tau=\tfrac{\omega_2}{\omega_1}</math>. One has:<ref name=":2">{{citation|title=Modular functions and Dirichlet series in number theory|date=1976|at=p. 14|publication-place=New York|publisher=Springer-Verlag|language=German|isbn=0-387-90185-X| surname1=Apostol, Tom M.}}</ref> <math display="block">g_2(1,\tau)=\omega_1^4g_2(\omega_1,\omega_2),</math> <math display="block">g_3(1,\tau)=\omega_1^6 g_3(\omega_1,\omega_2).</math> That means ''g''<sub>2</sub> and ''g''<sub>3</sub> are only scaled by doing this. Set <math display="block">g_2(\tau):=g_2(1,\tau) </math> and <math display="block">g_3(\tau):=g_3(1,\tau).</math> As functions of <math>\tau\in\mathbb{H}</math>, <math>g_2</math> and <math>g_3</math> are so called [[Modular form|modular forms.]] The [[Fourier series]] for <math>g_2</math> and <math>g_3</math> are given as follows:<ref>{{Cite book|last=Apostol, Tom M.|url=https://www.worldcat.org/oclc/20262861|title=Modular functions and Dirichlet series in number theory|date=1990| publisher=Springer-Verlag|isbn=0-387-97127-0|edition=2nd|location=New York|pages=20|oclc=20262861}}</ref> <math display="block">g_2(\tau)=\frac43\pi^4 \left[ 1+ 240\sum_{k=1}^\infty \sigma_3(k) q^{2k} \right] </math> <math display="block">g_3(\tau)=\frac{8}{27}\pi^6 \left[ 1- 504\sum_{k=1}^\infty \sigma_5(k) q^{2k} \right] </math> where <math display="block">\sigma_m(k):=\sum_{d\mid{k}}d^m</math> is the [[divisor function]] and <math>q=e^{\pi i\tau}</math> is the [[Nome (mathematics)|nome]]. ===Modular discriminant=== [[Image:Discriminant real part.jpeg|thumb|The real part of the discriminant as a function of the square of the nome ''q'' on the unit disk.]] The ''modular discriminant'' <math>\Delta</math> is defined as the [[discriminant]] of the characteristic polynomial of the differential equation <math display="block"> \wp'^2(z) = 4\wp ^3(z)-g_2\wp(z)-g_3</math> as follows: <math display="block"> \Delta=g_2^3-27g_3^2. </math> The discriminant is a modular form of weight <math>12</math>. That is, under the action of the [[modular group]], it transforms as <math display="block">\Delta \left( \frac {a\tau+b} {c\tau+d}\right) = \left(c\tau+d\right)^{12} \Delta(\tau) </math> where <math>a,b,d,c\in\mathbb{Z}</math> with <math>ad-bc = 1</math>.<ref>{{Cite book|last=Apostol | first = Tom M.| url=https://www.worldcat.org/oclc/2121639|title=Modular functions and Dirichlet series in number theory| date=1976| publisher=Springer-Verlag|isbn=0-387-90185-X|location=New York|pages=50|oclc=2121639}}</ref> Note that <math>\Delta=(2\pi)^{12}\eta^{24}</math> where <math>\eta</math> is the [[Dedekind eta function]].<ref>{{Cite book| last=Chandrasekharan, K. (Komaravolu), 1920-|url=https://www.worldcat.org/oclc/12053023|title=Elliptic functions| date=1985| publisher=Springer-Verlag|isbn=0-387-15295-4|location=Berlin|pages=122|oclc=12053023}}</ref> For the Fourier coefficients of <math>\Delta</math>, see [[Ramanujan tau function]]. ===The constants ''e''<sub>1</sub>, ''e''<sub>2</sub> and ''e''<sub>3</sub>=== <math>e_1</math>, <math>e_2</math> and <math>e_3</math> are usually used to denote the values of the <math>\wp</math>-function at the half-periods. <math display="block">e_1\equiv\wp\left(\frac{\omega_1}{2}\right)</math> <math display="block">e_2\equiv\wp\left(\frac{\omega_2}{2}\right)</math> <math display="block">e_3\equiv\wp\left(\frac{\omega_1+\omega_2}{2}\right)</math> They are pairwise distinct and only depend on the lattice <math>\Lambda</math> and not on its generators.<ref>{{citation| first=Rolf | last = Busam|title=Funktionentheorie 1|edition=4., korr. und erw. Aufl|publisher=Springer|publication-place=Berlin| at=p. 270|isbn=978-3-540-32058-6|date=2006|language=German}}</ref> <math>e_1</math>, <math>e_2</math> and <math>e_3</math> are the roots of the cubic polynomial <math>4\wp(z)^3-g_2\wp(z)-g_3</math> and are related by the equation: <math display="block">e_1+e_2+e_3=0.</math> Because those roots are distinct the discriminant <math>\Delta</math> does not vanish on the upper half plane.<ref>{{citation| first=Tom M. |last = Apostol|title=Modular functions and Dirichlet series in number theory|publisher=Springer-Verlag|publication-place=New York|at=p. 13|isbn=0-387-90185-X|date=1976|language=German}}</ref> Now we can rewrite the differential equation: <math display="block">\wp'^2(z)=4(\wp(z)-e_1)(\wp(z)-e_2)(\wp(z)-e_3).</math> That means the half-periods are zeros of <math>\wp'</math>. The invariants <math>g_2</math> and <math>g_3</math> can be expressed in terms of these constants in the following way:<ref>{{citation|surname1=K. Chandrasekharan|title=Elliptic functions|publisher=Springer-Verlag|publication-place=Berlin|at=p. 33| isbn=0-387-15295-4|date=1985|language=German}}</ref> <math display="block">g_2 = -4 (e_1 e_2 + e_1 e_3 + e_2 e_3)</math> <math display="block">g_3 = 4 e_1 e_2 e_3</math> <math>e_1</math>, <math>e_2</math> and <math>e_3</math> are related to the [[modular lambda function]]: <math display="block">\lambda (\tau)=\frac{e_3-e_2}{e_1-e_2},\quad \tau=\frac{\omega_2}{\omega_1}.</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)