Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Weierstrass factorization theorem
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Weierstrass factorization theorem== Let {{math|''ƒ''}} be an entire function, and let <math>\{a_n\}</math> be the non-zero zeros of {{math|''ƒ''}} repeated according to multiplicity; suppose also that {{math|''ƒ''}} has a zero at {{math|1=''z'' = 0}} of order {{math|''m'' ≥ 0}}.{{efn|A zero of order {{math|1=''m'' = 0}} at {{math|1=''z'' = 0}} is taken to mean {{math|''ƒ''(0) ≠ 0}} — that is, <math>f</math> does not have a zero at <math>0</math>.}} Then there exists an entire function {{math|''g''}} and a sequence of integers <math>\{p_n\}</math> such that : <math>f(z)=z^m e^{g(z)} \prod_{n=1}^\infty E_{p_n}\!\!\left(\frac{z}{a_n}\right).</math><ref name="conway">{{citation|last=Conway|first=J. B.|title=Functions of One Complex Variable I, 2nd ed.|publisher=Springer|location=springer.com|year=1995|isbn=0-387-90328-3}}</ref> The case given by the fundamental theorem of algebra is incorporated here. If the sequence <math>\{a_n\}</math> is finite then we can take <math>p_n = 0</math>, <math>m=0</math> and <math>e^{g(z)}=c</math> to obtain <math>\, f(z) = c\,{\displaystyle\prod}_n (z-a_n)</math>. === Examples of factorization === The trigonometric functions [[sine]] and [[cosine]] have the factorizations <math display=block>\sin \pi z = \pi z \prod_{n\neq 0} \left(1-\frac{z}{n}\right)e^{z/n} = \pi z\prod_{n=1}^\infty \left(1-\left(\frac{z}{n}\right)^2\right)</math> <math display=block>\cos \pi z = \prod_{q \in \mathbb{Z}, \, q \; \text{odd} } \left(1-\frac{2z}{q}\right)e^{2z/q} = \prod_{n=0}^\infty \left( 1 - \left(\frac{z}{n+\tfrac{1}{2}} \right)^2 \right) </math> while the [[gamma function]] <math>\Gamma</math> has factorization <math display=block>\frac{1}{\Gamma (z)}=e^{\gamma z}z\prod_{n=1}^{\infty }\left ( 1+\frac{z}{n} \right )e^{-z/n},</math> where <math>\gamma</math> is the [[Euler–Mascheroni constant]].{{citation needed|date=April 2019}} The cosine identity can be seen as special case of <math display=block>\frac{1}{\Gamma(s-z)\Gamma(s+z)} = \frac{1}{\Gamma(s)^2}\prod_{n=0}^\infty \left( 1 - \left(\frac{z}{n+s} \right)^2 \right) </math> for <math>s=\tfrac{1}{2}</math>.{{citation needed|date=April 2019}}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)