Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wilson loop
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==Lattice formulation== In [[lattice field theory]], Wilson lines and loops play a fundamental role in formulating gauge fields on the [[lattice (group)|lattice]]. The smallest Wilson lines on the lattice, those between two adjacent lattice points, are known as links, with a single link starting from a lattice point <math>n</math> going in the <math>\mu</math> direction denoted by <math>U_\mu(n)</math>. Four links around a single square are known as a plaquette, with their trace forming the smallest Wilson loop.<ref>{{cite book|last1=Baulieu|first1=L.|author-link1=|last2=Iliopoulos|first2=J.|author-link2=John Iliopoulos|last3=Sénéor|first3=R.|author-link3=:fr:Roland Sénéor|date=2017|title=From Classical to Quantum Fields|url=|doi=|location=|publisher=Oxford University Press|chapter=25|page=720|isbn=978-0198788409}}</ref> It is these plaquettes that are used to construct the lattice gauge action known as the [[Wilson action]]. Larger Wilson loops are expressed as products of link variables along some loop <math>\gamma</math>, denoted by<ref>{{cite book|last1=Montvay|first1=I.|last2=Munster|first2=G.|date=1994|title=Quantum Fields on a Lattice|series=Cambridge Monographs on Mathematical Physics|url=|doi=10.1017/CBO9780511470783|location=Cambridge|publisher=Cambridge University Press|chapter=43|page=105|isbn=9780511470783|s2cid=118339104 }}</ref> :<math> L[U] = \text{tr} \bigg[\prod_{n \in \gamma} U_\mu(n)\bigg]. </math> These Wilson loops are used to study confinement and quark potentials [[computational physics|numerically]]. [[Linear combination]]s of Wilson loops are also used as interpolating operators that give rise to [[glueball|glueball states]].<ref>{{cite book|last1=DeGrand|first1=T.|last2=DeTar|first2=C.|date=2006|title=Lattice Methods for Quantum Chromodynamics|series=|url=|doi=10.1142/6065|location=|publisher=World Scientific Publishing|chapter=11|pages=232–233|bibcode=2006lmqc.book.....D |isbn=978-9812567277}}</ref> The glueball masses can then be extracted from the [[correlation function (quantum field theory)|correlation function]] between these interpolators.<ref>{{cite journal|last1=Chen|first1=Y.|authorlink1=|display-authors=etal|date=2006|title=Glueball spectrum and matrix elements on anisotropic lattices|url=|journal=Phys. Rev. D|volume=73|issue=1|page=014516|doi=10.1103/PhysRevD.73.014516|pmid=|arxiv=hep-lat/0510074|bibcode=2006PhRvD..73a4516C |s2cid=15741174|access-date=}}</ref> The lattice formulation of the Wilson loops also allows for an analytic demonstration of confinement in the [[Coupling constant#Weak and strong coupling|strongly coupled]] phase, assuming the [[quenched approximation]] where quark loops are neglected.<ref>{{cite book|last=Yndurain|first=F.J.|author-link=Francisco José Ynduráin|date=2006|title=The Theory of Quark and Gluon Interactions|url=|doi=|location=|edition=4|publisher=Springer|chapter=9|page=383|isbn=978-3540332091}}</ref> This is done by expanding out the Wilson action as a [[power series]] of traces of plaquettes, where the first non-vanishing term in the expectation value of the Wilson loop in an <math>\text{SU}(3)</math> gauge theory gives rise to an area law with a string tension of the form<ref>{{cite book|last1=Gattringer|first1=C.|last2=Lang|first2=C.B.|date=2009|title=Quantum Chromodynamics on the Lattice: An Introductory Presentation|series=Lecture Notes in Physics 788|url=|doi=10.1007/978-3-642-01850-3|location=|publisher=Springer|chapter=3|pages=58–62|isbn=978-3642018497}}</ref><ref>{{cite journal|last1=Drouffe|first1=J.M.|authorlink1=|last2=Zuber|first2=J.B.|authorlink2=Jean-Bernard Zuber|date=1983|title=Strong coupling and mean field methods in lattice gauge theories|url=https://dx.doi.org/10.1016/0370-1573%2883%2990034-0|journal=Physics Reports|volume=102|issue=1|pages=1–119|doi=10.1016/0370-1573(83)90034-0|pmid=|arxiv=|bibcode=1983PhR...102....1D |s2cid=|access-date=|url-access=subscription}}</ref> :<math> \sigma = - \frac{1}{a^2}\ln \bigg(\frac{\beta}{18}\bigg)(1+\mathcal O(\beta)), </math> where <math>\beta =6/g^2</math> is the inverse coupling constant and <math>a</math> is the lattice spacing. While this argument holds for both the abelian and non-abelian case, compact [[electrodynamics]] only exhibits confinement at strong coupling, with there being a [[phase transition]] to the Coulomb phase at <math>\beta \sim 1.01</math>, leaving the theory deconfined at weak coupling.<ref>{{cite journal|last1=Lautrup|first1=B.E.|authorlink1=Benny Lautrup|last2=Nauenberg|first2=M.|authorlink2=Michael Nauenberg|date=1980|title=Phase Transition in Four-Dimensional Compact QED|url=https://cds.cern.ch/record/133835|journal=Phys. Lett. B|volume=95|issue=1|pages=63–66|doi=10.1016/0370-2693(80)90400-1|pmid=|arxiv=|bibcode=1980PhLB...95...63L |s2cid=|access-date=}}</ref><ref>{{cite journal|last1=Guth|first1=A.H.|authorlink1=Alan Guth|date=1980|title=Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory|url=https://link.aps.org/doi/10.1103/PhysRevD.21.2291|journal=Phys. Rev. D|volume=21|issue=8|pages=2291–2307|doi=10.1103/PhysRevD.21.2291|pmid=|arxiv=|bibcode=1980PhRvD..21.2291G |s2cid=|access-date=|url-access=subscription}}</ref> Such a phase transition is not believed to exist for <math>\text{SU}(N)</math> gauge theories at [[absolute zero|zero temperature]], instead they exhibit confinement at all values of the coupling constant.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)