Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Wind wave
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Spectral models=== [[Sea state]] can be described by the '''sea wave spectrum''' or just '''wave spectrum''' <math>S(\omega, \Theta)</math>. It is composed of a '''wave height spectrum''' (WHS) <math>S(\omega)</math> and a '''wave direction spectrum''' (WDS) <math>f(\Theta)</math>. Many interesting properties about the sea state can be found from the wave spectra. WHS describes the [[spectral density]] of [[wave height]] [[variance]] ("power") versus [[wave frequency]], with [[dimension (physics)|dimension]] <math>\{S(\omega)\} = \{{\text{length}}^2\cdot\text{time}\}</math>. The relationship between the spectrum <math>S(\omega_j)</math> and the wave amplitude <math>A_j</math> for a wave component <math>j</math> is: : <math>\frac{1}{2} A_j^2 = S(\omega_j)\, \Delta \omega</math>{{citation needed|date=February 2021}}{{Clarify|define the variables. What do the symbols stand for?|date=May 2023}} Some WHS models are listed below. * The International Towing Tank Conference (ITTC) <ref>{{citation | title=International Towing Tank Conference (ITTC) | url=http://ittc.sname.org/ | access-date=11 November 2010 }}</ref> recommended spectrum model for fully developed sea (ISSC<ref>International Ship and Offshore Structures Congress</ref> spectrum/modified [[Pierson-Moskowitz spectrum]]):<ref>{{citation | doi=10.1029/JZ069i024p05181 | first1=W. J. | last1=Pierson | first2=L. | last2=Moscowitz | title=A proposed spectral form for fully developed wind seas based on the similarity theory of S A Kitaigorodskii | journal=Journal of Geophysical Research | volume=69 | issue=24 | pages=5181β5190 | year=1964 | bibcode=1964JGR....69.5181P}}</ref> :: <math> \frac{S(\omega)}{H_{1/3}^2 T_1} = \frac{0.11}{2\pi} \left(\frac{\omega T_1}{2\pi}\right)^{-5} \mathrm{exp} \left[-0.44 \left(\frac{\omega T_1}{2\pi}\right)^{-4} \right] </math> * ITTC recommended spectrum model for limited [[Fetch (geography)|fetch]] ([[JONSWAP spectrum]]) :: <math> S(\omega) = 155 \frac{H_{1/3}^2}{T_1^4 \omega^5} \mathrm{exp} \left(\frac{-944}{T_1^4 \omega^4}\right)(3.3)^Y, </math> :where :: <math>Y = \exp \left[-\left(\frac{0.191 \omega T_1 -1}{2^{1/2}\sigma}\right)^2\right]</math> :: <math>\sigma = \begin{cases} 0.07 & \text{if }\omega \le 5.24 / T_1, \\ 0.09 & \text{if }\omega > 5.24 / T_1. \end{cases} </math> :(The latter model has since its creation improved based on the work of Phillips and Kitaigorodskii to better model the wave height spectrum for high [[wavenumber]]s.<ref>{{cite journal|last1=Elfouhaily|first1=T.|last2=Chapron|first2=B.|last3=Katsaros|first3=K.|last4=Vandemark|first4=D.|title=A unified directional spectrum for long and short wind-driven waves|journal=[[Journal of Geophysical Research]]|date=July 15, 1997|volume=102|issue=C7|pages=15781β15796|url=http://archimer.ifremer.fr/doc/00091/20226/17877.pdf|doi=10.1029/97jc00467|bibcode = 1997JGR...10215781E |doi-access=free}}</ref>) As for WDS, an example model of <math>f(\Theta)</math> might be: : <math>f(\Theta) = \frac{2}{\pi}\cos^2\Theta, \qquad -\pi/2 \le \Theta \le \pi/2</math> Thus the sea state is fully determined and can be recreated by the following function where <math>\zeta</math> is the wave elevation, <math>\epsilon_{j}</math> is uniformly distributed between 0 and <math>2\pi</math>, and <math>\Theta_j</math> is randomly drawn from the directional distribution function <math>\sqrt{f(\Theta)}:</math><ref>{{citation | first=E. R. | last=Jefferys | title=Directional seas should be ergodic | journal=Applied Ocean Research | volume=9 | issue=4 | year=1987 | pages=186β191 | doi=10.1016/0141-1187(87)90001-0 | bibcode=1987AppOR...9..186J }}</ref> : <math>\zeta = \sum_{j=1}^N \sqrt{2 S(\omega_j) \Delta \omega_j}\; \sin(\omega_j t - k_j x \cos \Theta_j - k_j y \sin \Theta_j + \epsilon_{j}).</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)