Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
World line
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Tangent vector to a world line: four-velocity=== The four coordinate functions <math>x^a(\tau),\; a = 0, 1, 2, 3</math> defining a world line, are real number functions of a real variable <math>\tau</math> and can simply be differentiated by the usual calculus. Without the existence of a metric (this is important to realize) one can imagine the difference between a point <math>p</math> on the curve at the parameter value <math>\tau_0</math> and a point on the curve a little (parameter <math>\tau_0 + \Delta\tau</math>) farther away. In the limit <math>\Delta\tau \to 0</math>, this difference divided by <math>\Delta\tau</math> defines a vector, the '''tangent vector''' of the world line at the point <math>p</math>. It is a four-dimensional vector, defined in the point <math>p</math>. It is associated with the normal 3-dimensional velocity of the object (but it is not the same) and therefore termed [[four-velocity]] <math>\vec{v}</math>, or in components: <math display="block">\vec{v} = \left(v^0, v^1, v^2, v^3\right) = \left( \frac{dx^0}{d\tau}\;,\frac{dx^1}{d\tau}\;, \frac{dx^2}{d\tau}\;, \frac{dx^3}{d\tau} \right)</math> such that the derivatives are taken at the point <math>p</math>, so at <math>\tau = \tau_0</math>. All curves through point p have a tangent vector, not only world lines. The sum of two vectors is again a tangent vector to some other curve and the same holds for multiplying by a scalar. Therefore, all tangent vectors for a point p span a [[linear space]], termed the [[tangent space]] at point p. For example, taking a 2-dimensional space, like the (curved) surface of the Earth, its tangent space at a specific point would be the flat approximation of the curved space.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)