Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Bernoulli number
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Assorted identities === {{unordered list |1 = [[Umbral calculus]] gives a compact form of Bernoulli's formula by using an abstract symbol {{math|'''B'''}}: : <math>S_m(n) = \frac 1 {m+1} ((\mathbf{B} + n)^{m+1} - B_{m+1}) </math> where the symbol {{math|'''B'''<sup>''k''</sup>}} that appears during binomial expansion of the parenthesized term is to be replaced by the Bernoulli number {{math|''B<sub>k</sub>''}} (and {{math|''B''<sub>1</sub> {{=}} +{{sfrac|1|2}}}}). More suggestively and mnemonically, this may be written as a definite integral: :<math>S_m(n) = \int_0^n (\mathbf{B}+x)^m\,dx </math> Many other Bernoulli identities can be written compactly with this symbol, e.g. :<math> (1-2\mathbf{B})^m = (2-2^m) B_m </math> |2 = Let {{math|''n''}} be non-negative and even :<math> \zeta(n) = \frac{(-1)^{\frac{n}{2} - 1} B_n (2\pi)^n}{2(n!)}</math> |3 = The {{math|''n''}}th [[cumulant]] of the [[uniform distribution (continuous)|uniform]] [[probability distribution]] on the interval [−1, 0] is {{math|{{sfrac|''B''<sub>''n''</sub>|''n''}}}}. |4 = Let {{math|''n''? {{=}} {{sfrac|1|''n''!}}}} and {{math|''n'' ≥ 1}}. Then {{math|''B''<sub>''n''</sub>}} is the following {{math|(''n'' + 1) × (''n'' + 1)}} determinant:{{r|Malenfant2011}} : <math> \begin{align} B_n & = n! \begin{vmatrix} 1 & 0 & \cdots & 0 & 1 \\ 2? & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ n? & (n-1)? & \cdots & 1 & 0 \\ (n+1)? & n? & \cdots & 2? & 0 \end{vmatrix} \\[8pt] & = n! \begin{vmatrix} 1 & 0 & \cdots & 0 & 1 \\ \frac{1}{2!} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ \frac{1}{n!} & \frac{1}{(n-1)!} & \cdots & 1 & 0 \\ \frac{1}{(n+1)!} & \frac{1}{n!} & \cdots & \frac{1}{2!} & 0 \end{vmatrix} \end{align} </math> Thus the determinant is {{math|''σ''<sub>''n''</sub>(1)}}, the [[Stirling polynomial]] at {{math|''x'' {{=}} 1}}. |5 = For even-numbered Bernoulli numbers, {{math|''B''<sub>2''p''</sub>}} is given by the {{math|(''p'' + 1) × (''p'' + 1)}} determinant::{{r|Malenfant2011}} :<math> B_{2p} = -\frac{(2p)!}{2^{2p} - 2} \begin{vmatrix} 1 & 0 & 0 & \cdots & 0 & 1 \\ \frac{1}{3!} & 1 & 0 & \cdots & 0 & 0 \\ \frac{1}{5!} & \frac{1}{3!} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots& \vdots \\ \frac{1}{(2p+1)!} & \frac{1}{(2p-1)!} & \frac{1}{(2p-3)!} &\cdots & \frac{1}{3!} & 0 \end{vmatrix}</math> |6 = Let {{math|''n'' ≥ 1}}. Then ([[Leonhard Euler]])<ref>Euler, E41, Inventio summae cuiusque seriei ex dato termino generali </ref> : <math> \frac{1}{n} \sum_{k=1}^n \binom{n}{k}B_k B_{n-k}+B_{n-1}=-B_n </math> |7 = Let {{math|''n'' ≥ 1}}. Then{{r|vonEttingshausen1827}} : <math> \sum_{k=0}^n \binom{n+1}k (n+k+1)B_{n+k}=0 </math> |8 = Let {{math|''n'' ≥ 0}}. Then ([[Leopold Kronecker]] 1883) : <math> B_n = - \sum_{k=1}^{n+1} \frac{(-1)^k}{k} \binom{n+1}{k} \sum_{j=1}^k j^n </math> |9 = Let {{math|''n'' ≥ 1}} and {{math|''m'' ≥ 1}}. Then{{r|Carlitz1968}} : <math> (-1)^m \sum_{r=0}^m \binom{m}{r} B_{n+r}=(-1)^n \sum_{s=0}^n \binom{n}{s} B_{m+s} </math> |10 = Let {{math|''n'' ≥ 4}} and : <math> H_n=\sum_{k=1}^n k^{-1} </math> the [[harmonic number]]. Then (H. Miki 1978) : <math> \frac{n}{2}\sum_{k=2}^{n-2}\frac{B_{n-k}}{n-k}\frac{B_k}{k} - \sum_{k=2}^{n-2} \binom{n}{k}\frac{B_{n-k}}{n-k} B_k =H_n B_n</math> |11 = Let {{math|''n'' ≥ 4}}. [[Yuri Matiyasevich]] found (1997) : <math> (n+2)\sum_{k=2}^{n-2}B_k B_{n-k}-2\sum_{l=2}^{n-2}\binom{n+2}{l} B_l B_{n-l}=n(n+1)B_n </math> |12 = ''Faber–[[Rahul Pandharipande|Pandharipande]]–[[Zagier]]–Gessel identity'': for {{math|''n'' ≥ 1}}, : <math> \frac{n}{2}\left(B_{n-1}(x)+\sum_{k=1}^{n-1}\frac{B_{k}(x)}{k} \frac{B_{n-k}(x)}{n-k}\right) -\sum_{k=0}^{n-1}\binom{n}{k}\frac{B_{n-k}} {n-k} B_k(x) =H_{n-1}B_n(x).</math> Choosing {{math|''x'' {{=}} 0}} or {{math|''x'' {{=}} 1}} results in the Bernoulli number identity in one or another convention. |13 = The next formula is true for {{math|''n'' ≥ 0}} if {{math|''B''<sub>1</sub> {{=}} ''B''<sub>1</sub>(1) {{=}} {{sfrac|1|2}}}}, but only for {{math|''n'' ≥ 1}} if {{math|''B''<sub>1</sub> {{=}} ''B''<sub>1</sub>(0) {{=}} −{{sfrac|1|2}}}}. :<math> \sum_{k=0}^n \binom{n}{k} \frac{B_k}{n-k+2} = \frac{B_{n+1}}{n+1} </math> |14 = Let {{math|''n'' ≥ 0}}. Then :<math> -1 + \sum_{k=0}^n \binom{n}{k} \frac{2^{n-k+1}}{n-k+1}B_k(1) = 2^n </math> and :<math> -1 + \sum_{k=0}^n \binom{n}{k} \frac{2^{n-k+1}}{n-k+1}B_{k}(0) = \delta_{n,0} </math> |15 = A reciprocity relation of M. B. Gelfand:{{r|AgohDilcher2008}} : <math> (-1)^{m+1} \sum_{j=0}^k \binom{k}{j} \frac{B_{m+1+j}}{m+1+j} + (-1)^{k+1} \sum_{j=0}^m \binom{m}{j}\frac{B_{k+1+j}}{k+1+j} = \frac{k!m!}{(k+m+1)!} </math> }}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)