Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beta distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Symmetric (''α'' = ''β'')===== * the density function is [[symmetry|symmetric]] about 1/2 (blue & teal plots). * median = mean = 1/2. *skewness = 0. *variance = 1/(4(2''α'' + 1)) *'''''α'' = ''β'' < 1''' **U-shaped (blue plot). **bimodal: left mode = 0, right mode =1, anti-mode = 1/2 **1/12 < var(''X'') < 1/4<ref name=JKB/> **−2 < excess kurtosis(''X'') < −6/5 ** ''α'' = ''β'' = 1/2 is the [[arcsine distribution]] *** var(''X'') = 1/8 ***excess kurtosis(''X'') = −3/2 ***CF = Rinc (t) <ref>{{Cite book|last1=Buchanan|first1=K.|last2=Rockway|first2=J.|last3=Sternberg|first3=O.|last4=Mai|first4=N. N.|title=2016 IEEE Radar Conference (RadarConf) |chapter=Sum-difference beamforming for radar applications using circularly tapered random arrays |date=May 2016|pages=1–5|doi=10.1109/RADAR.2016.7485289|isbn=978-1-5090-0863-6|s2cid=32525626|chapter-url=https://zenodo.org/record/1279364}}</ref> ** ''α'' = ''β'' → 0 is a 2-point [[Bernoulli distribution]] with equal probability 1/2 at each [[Dirac delta function]] end ''x'' = 0 and ''x'' = 1 and zero probability everywhere else. A coin toss: one face of the coin being ''x'' = 0 and the other face being ''x'' = 1. *** <math> \lim_{\alpha = \beta \to 0} \operatorname{var}(X) = \tfrac{1}{4} </math> *** <math> \lim_{\alpha = \beta \to 0} \operatorname{excess \ kurtosis}(X) = - 2</math> a lower value than this is impossible for any distribution to reach. *** The [[information entropy|differential entropy]] approaches a [[Maxima and minima|minimum]] value of −∞ *'''α = β = 1''' **the [[uniform distribution (continuous)|uniform [0, 1] distribution]] **no mode **var(''X'') = 1/12 **excess kurtosis(''X'') = −6/5 **The (negative anywhere else) [[information entropy|differential entropy]] reaches its [[Maxima and minima|maximum]] value of zero **CF = Sinc (t) *'''''α'' = ''β'' > 1''' **symmetric [[unimodal]] ** mode = 1/2. **0 < var(''X'') < 1/12<ref name=JKB/> **−6/5 < excess kurtosis(''X'') < 0 **''α'' = ''β'' = 3/2 is a semi-elliptic [0, 1] distribution, see: [[Wigner semicircle distribution]]<ref>{{Cite book|last1=Buchanan|first1=K.|last2=Flores|first2=C.|last3=Wheeland|first3=S.|last4=Jensen|first4=J.|last5=Grayson|first5=D.|last6=Huff|first6=G.|title=2017 IEEE Radar Conference (RadarConf) |chapter=Transmit beamforming for radar applications using circularly tapered random arrays |date=May 2017|pages=0112–0117|doi=10.1109/RADAR.2017.7944181|isbn=978-1-4673-8823-8|s2cid=38429370}}</ref> ***var(''X'') = 1/16. ***excess kurtosis(''X'') = −1 ***CF = 2 Jinc (t) **''α'' = ''β'' = 2 is the parabolic [0, 1] distribution ***var(''X'') = 1/20 ***excess kurtosis(''X'') = −6/7 ***CF = 3 Tinc (t) <ref>{{Cite web|last=Ryan|first=Buchanan, Kristopher|date=2014-05-29|title=Theory and Applications of Aperiodic (Random) Phased Arrays|url=http://oaktrust.library.tamu.edu/handle/1969.1/157918|language=en}}</ref> **''α'' = ''β'' > 2 is bell-shaped, with [[inflection point]]s located to either side of the mode ***0 < var(''X'') < 1/20 ***−6/7 < excess kurtosis(''X'') < 0 **''α'' = ''β'' → ∞ is a 1-point [[Degenerate distribution]] with a [[Dirac delta function]] spike at the midpoint ''x'' = 1/2 with probability 1, and zero probability everywhere else. There is 100% probability (absolute certainty) concentrated at the single point ''x'' = 1/2. ***<math> \lim_{\alpha = \beta \to \infty} \operatorname{var}(X) = 0 </math> ***<math> \lim_{\alpha = \beta \to \infty} \operatorname{excess \ kurtosis}(X) = 0</math> ***The [[information entropy|differential entropy]] approaches a [[Maxima and minima|minimum]] value of −∞
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)