Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Determinant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Related notions for non-commutative rings === For matrices over non-commutative rings, multilinearity and alternating properties are incompatible for {{math|''n'' ≥ 2}},<ref>In a non-commutative setting left-linearity (compatibility with left-multiplication by scalars) should be distinguished from right-linearity. Assuming linearity in the columns is taken to be left-linearity, one would have, for non-commuting scalars ''a'', ''b'': <math display=block>\begin{align} ab &= ab \begin{vmatrix}1&0 \\ 0&1\end{vmatrix} = a \begin{vmatrix}1&0 \\ 0&b\end{vmatrix} \\[5mu] &= \begin{vmatrix}a&0 \\ 0&b\end{vmatrix} = b \begin{vmatrix}a&0 \\ 0&1\end{vmatrix} = ba \begin{vmatrix}1&0 \\ 0&1\end{vmatrix} = ba, \end{align}</math> a contradiction. There is no useful notion of multi-linear functions over a non-commutative ring.</ref> so there is no good definition of the determinant in this setting. For square matrices with entries in a non-commutative ring, there are various difficulties in defining determinants analogously to that for commutative rings. A meaning can be given to the Leibniz formula provided that the order for the product is specified, and similarly for other definitions of the determinant, but non-commutativity then leads to the loss of many fundamental properties of the determinant, such as the multiplicative property or that the determinant is unchanged under transposition of the matrix. Over non-commutative rings, there is no reasonable notion of a multilinear form (existence of a nonzero {{clarify span|text=bilinear form|explain=What exactly is meant by this term must be specified. This statement is valid only if the bilinear form is required to be linear on the same side for both arguments; in contrast, Bourbaki defines a bilinear form B as having the property B(ax,yb) = aB(x,y)b, i.e., left-linear in the left argument and right-linear in the other.|date=October 2017}} with a [[Regular element (ring theory)|regular element]] of ''R'' as value on some pair of arguments implies that ''R'' is commutative). Nevertheless, various notions of non-commutative determinant have been formulated that preserve some of the properties of determinants, notably [[quasideterminant]]s and the [[Dieudonné determinant]]. For some classes of matrices with non-commutative elements, one can define the determinant and prove linear algebra theorems that are very similar to their commutative analogs. Examples include the ''q''-determinant on quantum groups, the [[Capelli determinant]] on Capelli matrices, and the [[Berezinian]] on [[supermatrices]] (i.e., matrices whose entries are elements of <math>\mathbb Z_2</math>-[[graded ring]]s).<ref>{{Citation | url = https://books.google.com/books?id=sZ1-G4hQgIIC&q=Berezinian&pg=PA116 | title = Supersymmetry for mathematicians: An introduction | isbn = 978-0-8218-3574-6 | last1 = Varadarajan | first1 = V. S | year = 2004 | publisher = American Mathematical Soc. | postscript = .}}</ref> [[Manin matrices]] form the class closest to matrices with commutative elements.
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)