Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beta distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=====Skewed (''α'' ≠ ''β'')===== The density function is [[Skewness|skewed]]. An interchange of parameter values yields the [[mirror image]] (the reverse) of the initial curve, some more specific cases: *'''''α'' < 1, ''β'' < 1''' ** U-shaped ** Positive skew for ''α'' < ''β'', negative skew for ''α'' > ''β''. ** bimodal: left mode = 0, right mode = 1, anti-mode = <math>\tfrac{\alpha-1}{\alpha + \beta-2} </math> ** 0 < median < 1. ** 0 < var(''X'') < 1/4 *'''''α'' > 1, ''β'' > 1''' ** [[unimodal]] (magenta & cyan plots), **Positive skew for ''α'' < ''β'', negative skew for ''α'' > ''β''. **<math>\text{mode}= \tfrac{\alpha-1}{\alpha + \beta-2} </math> ** 0 < median < 1 ** 0 < var(''X'') < 1/12 *'''''α'' < 1, ''β'' ≥ 1''' **reverse J-shaped with a right tail, **positively skewed, **strictly decreasing, [[convex function|convex]] ** mode = 0 ** 0 < median < 1/2. ** <math>0 < \operatorname{var}(X) < \tfrac{-11+5 \sqrt{5}}{2}, </math> (maximum variance occurs for <math>\alpha=\tfrac{-1+\sqrt{5}}{2}, \beta=1</math>, or ''α'' = '''Φ''' the [[Golden ratio|golden ratio conjugate]]) *'''''α'' ≥ 1, ''β'' < 1''' **J-shaped with a left tail, **negatively skewed, **strictly increasing, [[convex function|convex]] ** mode = 1 ** 1/2 < median < 1 ** <math>0 < \operatorname{var}(X) < \tfrac{-11+5 \sqrt{5}}{2},</math> (maximum variance occurs for <math>\alpha=1, \beta=\tfrac{-1+\sqrt{5}}{2}</math>, or ''β'' = '''Φ''' the [[Golden ratio|golden ratio conjugate]]) *'''''α'' = 1, ''β'' > 1''' **positively skewed, **strictly decreasing (red plot), **a reversed (mirror-image) power function [0,1] distribution ** mean = 1 / (''β'' + 1) ** median = 1 - 1/2<sup>1/''β''</sup> ** mode = 0 **α = 1, 1 < β < 2 ***[[concave function|concave]] *** <math>1-\tfrac{1}{\sqrt{2}}< \text{median} < \tfrac{1}{2}</math> *** 1/18 < var(''X'') < 1/12. **α = 1, β = 2 ***a straight line with slope −2, the right-[[triangular distribution]] with right angle at the left end, at ''x'' = 0 *** <math>\text{median}=1-\tfrac {1}{\sqrt{2}}</math> *** var(''X'') = 1/18 **α = 1, β > 2 ***reverse J-shaped with a right tail, ***[[convex function|convex]] *** <math>0 < \text{median} < 1-\tfrac{1}{\sqrt{2}}</math> *** 0 < var(''X'') < 1/18 *'''α > 1, β = 1''' **negatively skewed, **strictly increasing (green plot), **the power function [0, 1] distribution<ref name="Handbook of Beta Distribution" /> ** mean = α / (α + 1) ** median = 1/2<sup>1/α </sup> ** mode = 1 **2 > α > 1, β = 1 ***[[concave function|concave]] *** <math>\tfrac{1}{2} < \text{median} < \tfrac{1}{\sqrt{2}}</math> *** 1/18 < var(''X'') < 1/12 ** α = 2, β = 1 ***a straight line with slope +2, the right-[[triangular distribution]] with right angle at the right end, at ''x'' = 1 *** <math>\text{median}=\tfrac {1}{\sqrt{2}}</math> *** var(''X'') = 1/18 **α > 2, β = 1 ***J-shaped with a left tail, [[convex function|convex]] ***<math>\tfrac{1}{\sqrt{2}} < \text{median} < 1</math> *** 0 < var(''X'') < 1/18
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)