Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Ellipse
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Metric properties == All metric properties given below refer to an ellipse with equation {{NumBlk2||<math display="block">\frac{x^2}{a^2}+\frac{y^2}{b^2}= 1 </math>|1}} except for the section on the area enclosed by a tilted ellipse, where the generalized form of Eq.({{EquationNote|1}}) will be given. === Area === The [[area]] <math>A_\text{ellipse}</math> enclosed by an ellipse is: {{NumBlk2||<math display="block">A_\text{ellipse} = \pi ab</math>|2}} where <math>a</math> and <math>b</math> are the lengths of the semi-major and semi-minor axes, respectively. The area formula <math>\pi a b</math> is intuitive: start with a circle of radius <math>b</math> (so its area is <math>\pi b^2</math>) and stretch it by a factor <math>a/b</math> to make an ellipse. This scales the area by the same factor: <math>\pi b^2(a/b) = \pi a b.</math><ref>{{Cite book|last=Archimedes.|url=https://www.worldcat.org/oclc/48876646|title=The works of Archimedes|date=1897|publisher=Dover Publications|others=Heath, Thomas Little, Sir, 1861-1940. | isbn=0-486-42084-1 | location=Mineola, N.Y.|pages=115|oclc=48876646}}</ref> However, using the same approach for the circumference would be fallacious – compare the [[integral]]s <math display="inline">\int f(x)\, dx</math> and <math display="inline"> \int \sqrt{1+f'^2(x)}\, dx</math>. It is also easy to rigorously prove the area formula using integration as follows. Equation ({{EquationNote|1}}) can be rewritten as <math display="inline">y(x) = b \sqrt{1 - x^2 / a^2}.</math> For <math>x\in[-a,a],</math> this curve is the top half of the ellipse. So twice the integral of <math>y(x)</math> over the interval <math>[-a,a]</math> will be the area of the ellipse: <math display="block">\begin{align} A_\text{ellipse} &= \int_{-a}^a 2b\sqrt{1 - \frac{x^2}{a^2}}\,dx\\ &= \frac ba \int_{-a}^a 2\sqrt{a^2 - x^2}\,dx. \end{align}</math> The second integral is the area of a circle of radius <math>a,</math> that is, <math>\pi a^2.</math> So <math display="block">A_\text{ellipse} = \frac{b}{a}\pi a^2 = \pi ab.</math> An ellipse defined implicitly by <math>Ax^2+ Bxy + Cy^2 = 1 </math> has area <math>2\pi / \sqrt{4AC - B^2}.</math> The area can also be expressed in terms of eccentricity and the length of the semi-major axis as <math>a^2\pi\sqrt{1-e^2}</math> (obtained by solving for [[flattening]], then computing the semi-minor axis). [[Image:tiltedEllipse2.jpg|thumb|The area enclosed by a tilted ellipse is <math>\pi\; y_\text{int}\, x_\text{max}</math>.]] So far we have dealt with ''erect'' ellipses, whose major and minor axes are parallel to the <math>x</math> and <math>y</math> axes. However, some applications require ''tilted'' ellipses. In charged-particle beam optics, for instance, the enclosed area of an erect or tilted ellipse is an important property of the beam, its ''emittance''. In this case a simple formula still applies, namely {{NumBlk2||<math display="block">A_\text{ellipse} = \pi\; y_\text{int}\, x_\text{max} = \pi\; x_\text{int}\, y_\text{max}</math>|3}} where <math>y_{\text{int}}</math>, <math>x_{\text{int}}</math> are intercepts and <math>x_{\text{max}}</math>, <math>y_{\text{max}}</math> are maximum values. It follows directly from [[Ellipse#Theorem of Apollonios on conjugate diameters|Apollonios's theorem]]. ===Circumference=== {{Main|Perimeter of an ellipse}} {{further|Meridian arc#Quarter meridian}} [[File:Ellipses same circumference.png|thumb|Ellipses with same circumference]] The circumference <math>C</math> of an ellipse is: <math display="block">C \,=\, 4a\int_0^{\pi/2}\sqrt {1 - e^2 \sin^2\theta}\ d\theta \,=\, 4 a \,E(e)</math> where again <math>a</math> is the length of the semi-major axis, <math display="inline">e=\sqrt{1 - b^2/a^2}</math> is the eccentricity, and the function <math>E</math> is the [[complete elliptic integral of the second kind]], <math display="block">E(e) \,=\, \int_0^{\pi/2}\sqrt {1 - e^2 \sin^2\theta}\ d\theta</math> which is in general not an [[elementary function]]. The circumference of the ellipse may be evaluated in terms of <math>E(e)</math> using [[arithmetic-geometric mean|Gauss's arithmetic-geometric mean]];<ref>{{dlmf|first=B. C.|last=Carlson|id=19.8.E6|title=Elliptic Integrals}}</ref> this is a quadratically converging iterative method (see [[Elliptic integral#Computation|here]] for details). The exact [[infinite series]] is: <math display="block">\begin{align} \frac C{2\pi a} &= 1 - \left(\frac{1}{2}\right)^2e^2 - \left(\frac{1\cdot 3}{2\cdot 4}\right)^2\frac{e^4}{3} - \left(\frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6}\right)^2\frac{e^6}{5} - \cdots \\ &= 1 - \sum_{n=1}^\infty \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \frac{e^{2n}}{2n-1} \\ &= -\sum_{n=0}^\infty \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \frac{e^{2n}}{2n-1}, \end{align} </math> where <math>n!!</math> is the [[double factorial]] (extended to negative odd integers in the usual way, giving <math>(-1)!! = 1</math> and <math>(-3)!! = -1</math>). This series converges, but by expanding in terms of <math>h = (a-b)^2 / (a+b)^2,</math> [[James Ivory (mathematician)|James Ivory]],<ref>{{cite journal |last = Ivory |first = J. |title = A new series for the rectification of the ellipsis |author-link = James Ivory (mathematician) |journal = Transactions of the Royal Society of Edinburgh |year = 1798 |volume = 4 |issue = 2 |pages = 177{{ndash}}190 |url =https://books.google.com/books?id=FaUaqZZYYPAC&pg=PA177 |doi=10.1017/s0080456800030817 |s2cid = 251572677 }}</ref> [[Friedrich Wilhelm Bessel|Bessel]]<ref>{{cite journal |ref = {{harvid|Bessel|1825}} |last = Bessel |first = F. W. |title = The calculation of longitude and latitude from geodesic measurements (1825) |author-link = Friedrich Bessel |journal = [[Astron. Nachr.]] |year = 2010 |volume = 331 |number = 8 |pages = 852{{ndash}}861 |arxiv = 0908.1824 |doi = 10.1002/asna.201011352 |bibcode = 2010AN....331..852K |s2cid = 118760590 }} English translation of {{cite journal |first1= F. W. | last1=Bessel | doi=10.1002/asna.18260041601 | year=1825 | bibcode=1825AN......4..241B |title=Über die Berechnung der geographischen Längen und Breiten aus geodätischen Vermesssungen | journal=[[Astron. Nachr.]] |volume=4 |issue=16 |pages =241{{ndash}}254 |arxiv=0908.1823 | s2cid=118630614 | language=de }}</ref> and [[Ernst Kummer|Kummer]]<ref name=Linderholm95>{{cite journal |title=An Overlooked Series for the Elliptic Perimeter |first1=Carl E. |last1=Linderholm |first2=Arthur C. |last2=Segal |journal=Mathematics Magazine |volume=68 |issue=3 |pages=216–220 |date=June 1995 |doi=10.1080/0025570X.1995.11996318 }} which cites to {{cite journal |last=Kummer |first=Ernst Eduard |author-link=Ernst Kummer |title=Uber die Hypergeometrische Reihe |language=de |trans-title=About the hypergeometric series |journal=[[Journal für die Reine und Angewandte Mathematik]] |volume=15 |issue=1, 2 |year=1836 |pages=39–83, 127–172 |doi=10.1515/crll.1836.15.39 |url=https://archive.org/details/sim_journal-fuer-die-reine-und-angewandte-mathematik_1836_15 }}</ref> derived a series that converges much more rapidly. It is most concisely written in terms of the [[Binomial coefficient#Binomial coefficient with n = 1/2|binomial coefficient with <math>n = 1/2</math>]]: <math display="block">\begin{align} \frac{C}{\pi(a+b)} &= \sum_{n=0}^\infty {\frac 12 \choose n}^2 h^n \\ &= \sum_{n=0}^\infty \left(\frac{(2n-3)!!}{(2n)!!}\right)^2 h^n \\ &= \sum_{n=0}^\infty \left(\frac{(2n-3)!!}{2^n n!}\right)^2 h^n \\ &= \sum_{n=0}^\infty \left(\frac{1}{(2n-1)4^n}\binom{2n}{n}\right)^2 h^n \\ &= 1 + \frac{h}{4} + \frac{h^2}{64} + \frac{h^3}{256} + \frac{25\,h^4}{16384} + \frac{49\,h^5}{65536} + \frac{441\,h^6}{2^{20}} + \frac{1089\,h^7}{2^{22}} + \cdots. \end{align}</math> The coefficients are slightly smaller (by a factor of <math>2n-1</math>), but also <math>e^4/16 \le h \le e^4</math> is numerically much smaller than <math>e</math> except at <math>h = e = 0</math> and <math>h = e = 1</math>. For eccentricities less than 0.5 {{nobr|(<math>h < 0.005</math>),}} the error is at the limits of [[double-precision floating-point]] after the <math>h^4</math> term.<ref name=Cook23>{{cite web |title=Comparing approximations for ellipse perimeter |date=28 May 2023 |first=John D. |last=Cook |website=John D. Cook Consulting blog |url=https://www.johndcook.com/blog/2023/05/28/approximate-ellipse-perimeter/ |access-date=2024-09-16 }}</ref> [[Srinivasa Ramanujan]] gave two close [[approximations]] for the circumference in §16 of "Modular Equations and Approximations to <math>\pi</math>";<ref>{{cite journal |last=Ramanujan |first=Srinivasa |author-link=Srinivasa Ramanujan |title=Modular Equations and Approximations to ''π'' |journal = Quart. J. Pure App. Math. |volume = 45 |pages = 350{{ndash}}372 |year = 1914 |url = http://ramanujan.sirinudi.org/Volumes/published/ram06.pdf#page=24 |isbn = 978-0-8218-2076-6 }}</ref> they are <math display="block">\frac C\pi \approx 3(a + b) - \sqrt{(3a + b)(a + 3b)} = 3(a + b) - \sqrt{3(a+b)^2 + 4ab}</math> and <math display="block">\frac C{\pi(a+b)} \approx 1+\frac{3h}{10+\sqrt{4-3h}},</math> where <math>h</math> takes on the same meaning as above. The errors in these approximations, which were obtained empirically, are of order <math>h^3</math> and <math>h^5,</math> respectively.<ref name=Villarino>{{cite arXiv |eprint=math.CA/0506384 |title=Ramanujan's Perimeter of an Ellipse |first=Mark B. |last=Villarino |date=20 June 2005 |quote=We present a detailed analysis of Ramanujan’s most accurate approximation to the perimeter of an ellipse.}} In particular, the second equation underestimates the circumference by <math>\pi(a+b)h^5\theta(h),</math> where <math>22.888\cdot 10^{-6} < 3\cdot 2^{-17} < \theta(h) \le 4\left(1 - \frac{7\pi}{22}\right) < 1.60935\cdot10^{-3}</math> is an increasing function of <math>0 \le h \le 1.</math></ref><ref>{{cite web |title=Error in Ramanujan's approximation for ellipse perimeter |date=22 September 2024 |first=John D. |last=Cook |website=John D. Cook Consulting blog |url=https://www.johndcook.com/blog/2024/09/22/ellipse-perimeter-approx/ |access-date=2024-12-01 |quote=the relative error when {{math|''b'' {{=}} 1}} and {{mvar|a}} varies ... is bound by {{math|4/''π'' − 14/11 {{=}} 0.00051227…}}. }}</ref> This is because the second formula's infinite series expansion matches Ivory's formula up to the <math>h^4</math> term.{{r|Villarino|p=3}} ===Arc length=== {{further|Meridian arc#Calculation}} More generally, the [[arc length]] of a portion of the circumference, as a function of the angle subtended (or {{nobr|{{mvar|x}} coordinates}} of any two points on the upper half of the ellipse), is given by an incomplete [[elliptic integral]]. The upper half of an ellipse is parameterized by <math display="block"> y = b\ \sqrt{ 1-\frac{x^{2}}{a^{2}}\ } ~.</math> Then the arc length <math>s</math> from <math>\ x_{1}\ </math> to <math>\ x_{2}\ </math> is: <math display="block">s = -b\int_{\arccos \frac{x_1}{a}}^{\arccos \frac{x_2}{a}} \sqrt{\ 1 + \left( \tfrac{a^2}{b^2} - 1 \right)\ \sin^2 z ~} \; dz ~.</math> This is equivalent to <math display="block"> s = b\ \left[ \; E\left(z \;\Biggl|\; 1 - \frac{a^2}{b^2} \right) \; \right]^{\arccos \frac{x_1}{a}}_{z\ =\ \arccos \frac{x_2}{a}} </math> where <math>E(z \mid m)</math> is the incomplete elliptic integral of the second kind with parameter <math>m=k^{2}.</math> Some lower and upper bounds on the circumference of the canonical ellipse <math>\ x^2/a^2 + y^2/b^2 = 1\ </math> with <math>\ a \geq b\ </math> are<ref>{{cite journal |last1=Jameson |first1=G.J.O. |year=2014 |title=Inequalities for the perimeter of an ellipse |journal= Mathematical Gazette |volume=98 |issue=542 |pages=227–234 |doi=10.1017/S002555720000125X |s2cid=125063457}}</ref> <math display="block">\begin{align} 2\pi b &\le C \le 2\pi a\ , \\ \pi (a+b) &\le C \le 4(a+b)\ , \\ 4\sqrt{a^2+b^2\ } &\le C \le \sqrt{2\ } \pi \sqrt{a^2 + b^2\ } ~. \end{align}</math> Here the upper bound <math>\ 2\pi a\ </math> is the circumference of a [[circumscribed circle|circumscribed]] [[concentric circle]] passing through the endpoints of the ellipse's major axis, and the lower bound <math>4\sqrt{a^2+b^2}</math> is the perimeter of an [[inscribed figure|inscribed]] [[rhombus]] with [[vertex (geometry)|vertices]] at the endpoints of the major and the minor axes. Given an ellipse whose axes are drawn, we can construct the endpoints of a particular elliptic arc whose length is one eighth of the ellipse's circumference using only [[Straightedge and compass construction|straightedge and compass]] in a finite number of steps; for some specific shapes of ellipses, such as when the axes have a length ratio of {{tmath|\sqrt2 : 1}}, it is additionally possible to construct the endpoints of a particular arc whose length is one twelfth of the circumference.<ref>{{Cite book |last1=Prasolov |first1=V. |last2=Solovyev|first2=Y.|title=Elliptic Functions and Elliptic Integrals|publisher=American Mathematical Society |year=1997 |isbn=0-8218-0587-8|pages=58–60}}</ref> (The vertices and co-vertices are already endpoints of arcs whose length is one half or one quarter of the ellipse's circumference.) However, the general theory of straightedge-and-compass elliptic division appears to be unknown, unlike in [[Constructible polygon|the case of the circle]] and [[Lemniscate elliptic functions|the lemniscate]]. The division in special cases has been investigated by [[Adrien-Marie Legendre|Legendre]] in his classical treatise.<ref>Legendre's ''Traité des fonctions elliptiques et des intégrales eulériennes''</ref> === Curvature === The [[curvature]] is given by: <math display="block">\kappa = \frac{1}{a^2 b^2}\left(\frac{x^2}{a^4}+\frac{y^2}{b^4}\right)^{-\frac{3}{2}}\ ,</math> and the [[Radius of curvature#Ellipses|radius of curvature]], ρ = 1/κ, at point <math>(x,y)</math>: <math display="block">\rho = a^2 b^2 \left(\frac{x^{2}}{a^4} + \frac{y^{2}}{b^4}\right)^\frac{3}{2} = \frac{1}{a^4 b^4} \sqrt{\left(a^4 y^{2} + b^4 x^{2}\right)^3} \ .</math>The radius of curvature of an ellipse, as a function of angle ''{{mvar|θ}}'' from the center, is: <math display="block">R(\theta)=\frac{a^2}{b}\biggl(\frac{1-e^2(2-e^2)(\cos\theta)^2)}{1-e^2(\cos\theta)^2}\biggr)^{3/2}\,,</math>where e is the eccentricity. Radius of curvature at the two ''vertices'' <math>(\pm a,0)</math> and the centers of curvature: <math display="block">\rho_0 = \frac{b^2}{a}=p\ , \qquad \left(\pm\frac{c^2}{a}\,\bigg|\,0\right)\ .</math> Radius of curvature at the two ''co-vertices'' <math>(0,\pm b)</math> and the centers of curvature: <math display="block">\rho_1 = \frac{a^2}{b}\ , \qquad \left(0\,\bigg|\,\pm\frac{c^2}{b}\right)\ .</math>The locus of all the centers of curvature is called an [[Evolute#Evolute of an ellipse|evolute]]. In the case of an ellipse, the evolute is an [[astroid]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)