Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
AVR microcontrollers
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Uses == [[File:Arduino_Duemilanove_0509.JPG|right|thumb|Atmel AVR [[ATmega328]] 28-pin DIP on an Arduino Duemilanove board]] [[File:Atmega8_Development_Board.jpg|left|thumb|Atmel AVR ATmega8 28-pin DIP on a custom development board]] AVRs have been used in various automotive applications such as security, safety, powertrain and entertainment systems. Atmel has recently launched a new publication "Atmel Automotive Compilation" to help developers with automotive applications. Some current usages are in BMW, Daimler-Chrysler and TRW. The [[Arduino]] [[physical computing]] platform is based on an [[ATmega328]] microcontroller (ATmega168 or ATmega8 in board versions older than the Diecimila). The ATmega1280 and ATmega2560, with more pinout and memory capabilities, have also been employed to develop the [[Arduino Mega]] platform. Arduino boards can be used with its language and [[Integrated development environment|IDE]], or with more conventional programming environments ([[C (programming language)|C]], [[Assembly language|assembler]], etc.) as just standardized and widely available AVR platforms. USB-based AVRs have been used in the Microsoft Xbox hand controllers. The link between the controllers and Xbox is USB. Numerous companies produce AVR-based microcontroller boards intended for use by hobbyists, robot builders, experimenters and small system developers including: Cubloc,<ref>{{cite web|url=http://www.cubloc.com/|title=Comfile Technology|publisher=Comfile Technology, Inc.|access-date=13 January 2013|archive-date=17 January 2013|archive-url=https://web.archive.org/web/20130117112843/http://www.cubloc.com/|url-status=dead}}</ref> gnusb,<ref>{{cite web|url=http://gnusb.sourceforge.net/|title=gnusb: Open Source USB Sensor Box|access-date=13 January 2013}}</ref> [[BasicX]],<ref>{{cite web|url=http://www.basicx.com/|title=BasicX|publisher=NetMedia, Inc.|access-date=13 January 2013|archive-url=https://web.archive.org/web/20130523182113/http://basicx.com/|archive-date=23 May 2013|url-status=dead}}</ref> Oak Micros,<ref>{{cite web|url=http://oakmicros.com/content/index.php|title=Welcome to Oak Micros|work=Oak Micros|publisher=Oak Micros|url-status=dead|archive-url=https://web.archive.org/web/20121025082936/http://oakmicros.com/content/index.php|archive-date=2012-10-25|access-date=13 January 2013}}</ref> ZX Microcontrollers,<ref>{{cite web|url=http://www.zbasic.net/|title=ZBasic|access-date=13 January 2013}}</ref> and myAVR.<ref>{{cite web|url=http://www.myavr.com/|title=myAVR|publisher=Laser & Co. Solutions GmbH|access-date=13 January 2013}}</ref> There is also a large community of [[Arduino-compatible boards]] supporting similar users. [[Schneider Electric]] used to produce the M3000 Motor and Motion Control Chip, incorporating an Atmel AVR Core and an advanced motion controller for use in a variety of motion applications but this has been discontinued.<ref>{{cite web|url=http://www.imshome.com/products/m3000.html|title=M3000 Motion controller on a chip|work=imshome.com|publisher=Schneider Electric Motion USA|url-status=dead|archive-url=https://web.archive.org/web/20091202120117/http://www.imshome.com/products/m3000.html|archive-date=2009-12-02|access-date=2011-08-02}}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)