Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beta distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Related distributions == ===Transformations=== * If ''X'' ~ Beta(''α'', ''β'') then 1 − ''X'' ~ Beta(''β'', ''α'') [[Mirror image|mirror-image]] symmetry * If ''X'' ~ Beta(''α'', ''β'') then <math>\tfrac{X}{1-X} \sim {\beta'}(\alpha,\beta)</math>. The [[beta prime distribution]], also called "beta distribution of the second kind". * If <math>X\sim\text{Beta}(\alpha,\beta)</math>, then <math>Y=\log\frac{X}{1-X}</math> has a [[generalized logistic distribution]], with density <math>\frac{\sigma(y)^\alpha\sigma(-y)^\beta}{B(\alpha,\beta)}</math>, where <math>\sigma</math> is the [[logistic sigmoid]]. * If ''X'' ~ Beta(''α'', ''β'') then <math>\tfrac{1}{X} -1 \sim {\beta'}(\beta,\alpha)</math>. * If <math>X\sim\text{Beta}(\alpha_1,\beta_1)</math> and <math>Y\sim\text{Beta}(\alpha_2,\beta_2)</math> then <math>Z = \tfrac{X}{Y}</math> has density <math> \tfrac{B(\alpha_1 +\alpha_2, \beta_2) z^{\alpha_1 - 1} {}_2F_1(\alpha_1 + \alpha_2, 1- \beta_1; \alpha_1 +\alpha_2 + \beta_2; z) }{B(\alpha_1, \beta_1)B(\alpha_2, \beta_2)} </math> for <math>0 < z \leq 1 </math> and <math> \tfrac{B(\alpha_1 +\alpha_2, \beta_1) z^{-(\alpha_2 + 1)} {}_2F_1(\alpha_1 + \alpha_2, 1- \beta_2; \alpha_1 +\alpha_2 + \beta_1; \tfrac{1}{z})}{B(\alpha_1, \beta_1)B(\alpha_2, \beta_2)} </math> for <math> z \geq 1 </math>, where <math>{}_2F_1(a, b; c; x)</math> is the [[Hypergeometric function]].<ref name="Pham-Gia2000">{{cite journal |last1=Pham-Gia |first1=T. |title=Distributions of the ratios of independent beta variables and applications |journal=Communications in Statistics - Theory and Methods |date=January 2000 |volume=29 |issue=12 |pages=2693–2715 |doi=10.1080/03610920008832632 |url=https://doi.org/10.1080/03610920008832632 |access-date=13 November 2024 |language=en |issn=0361-0926}}</ref> * If ''X'' ~ Beta(''n''/2, ''m''/2) then <math>\tfrac{mX}{n(1-X)} \sim F(n,m)</math> (assuming ''n'' > 0 and ''m'' > 0), the [[F-distribution|Fisher–Snedecor F distribution]]. * If <math>X \sim \operatorname{Beta}\left(1+\lambda\tfrac{m-\min}{\max-\min}, 1 + \lambda\tfrac{\max-m}{\max-\min}\right)</math> then min + ''X''(max − min) ~ PERT(min, max, ''m'', ''λ'') where ''PERT'' denotes a [[PERT distribution]] used in [[PERT]] analysis, and ''m''=most likely value.<ref name=NewPERT>Herrerías-Velasco, José Manuel and Herrerías-Pleguezuelo, Rafael and René van Dorp, Johan. (2011). Revisiting the PERT mean and Variance. European Journal of Operational Research (210), p. 448–451.</ref> Traditionally<ref name=Malcolm /> ''λ'' = 4 in PERT analysis. * If ''X'' ~ Beta(1, ''β'') then ''X'' ~ [[Kumaraswamy distribution]] with parameters (1, ''β'') * If ''X'' ~ Beta(''α'', 1) then ''X'' ~ [[Kumaraswamy distribution]] with parameters (''α'', 1) * If ''X'' ~ Beta(''α'', 1) then −ln(''X'') ~ Exponential(''α'') ===Special and limiting cases=== [[File:Random Walk example.svg|thumb|Example of eight realizations of a random walk in one dimension starting at 0: the probability for the time of the last visit to the origin is distributed as Beta(1/2, 1/2)]] [[File:Arcsin density.svg|thumb|Beta(1/2, 1/2): The [[arcsine distribution]] probability density was proposed by [[Harold Jeffreys]] to represent uncertainty for a [[Bernoulli distribution|Bernoulli]] or a [[binomial distribution]] in [[Bayesian inference]], and is now commonly referred to as [[Jeffreys prior]]: ''p''<sup>−1/2</sup>(1 − ''p'')<sup>−1/2</sup>. This distribution also appears in several [[random walk]] fundamental theorems]] * Beta(1, 1) ~ [[uniform distribution (continuous)|U(0, 1)]] with density 1 on that interval. * Beta(n, 1) ~ Maximum of ''n'' independent rvs. with [[uniform distribution (continuous)|U(0, 1)]], sometimes called a ''a standard power function distribution'' with density ''n'' ''x''<sup>''n''–1</sup> on that interval. * Beta(1, n) ~ Minimum of ''n'' independent rvs. with [[uniform distribution (continuous)|U(0, 1)]] with density ''n''(1 − ''x'')<sup>''n''−1</sup> on that interval. * If ''X'' ~ Beta(3/2, 3/2) and ''r'' > 0 then 2''rX'' − ''r'' ~ [[Wigner semicircle distribution]]. * Beta(1/2, 1/2) is equivalent to the [[arcsine distribution]]. This distribution is also [[Jeffreys prior]] probability for the [[Bernoulli distribution|Bernoulli]] and [[binomial distribution]]s. * <math>\lim_{n \to \infty} n \operatorname{Beta}(1,n) = \operatorname{Exponential}(1)</math> the [[exponential distribution]]. * <math>\lim_{n \to \infty} n \operatorname{Beta}(k,n) = \operatorname{Gamma}(k,1)</math> the [[gamma distribution]]. * For large <math>n</math>, <math>\operatorname{Beta}(\alpha n,\beta n) \to \mathcal{N}\left(\frac{\alpha}{\alpha+\beta},\frac{\alpha\beta}{(\alpha+\beta)^3}\frac{1}{n}\right)</math> the [[normal distribution]]. More precisely, if <math>X_n \sim \operatorname{Beta}(\alpha n,\beta n)</math> then <math>\sqrt{n}\left(X_n -\tfrac{\alpha}{\alpha+\beta}\right)</math> converges in distribution to a normal distribution with mean 0 and variance <math>\tfrac{\alpha\beta}{(\alpha+\beta)^3}</math> as ''n'' increases. ===Derived from other distributions=== * The ''k''th [[order statistic]] of a sample of size ''n'' from the [[Uniform distribution (continuous)|uniform distribution]] is a beta random variable, ''U''<sub>(''k'')</sub> ~ Beta(''k'', ''n''+1−''k'').<ref name=David1/> * [[Gamma distribution]]: If ''X'' ~ Gamma(α, θ) and ''Y'' ~ Gamma(β, θ) are independent, then <math>\tfrac{X}{X+Y} \sim \operatorname{Beta}(\alpha, \beta)\,</math>. * [[Chi-squared distribution]]: If <math>X \sim \chi^2(\alpha)\,</math> and <math>Y \sim \chi^2(\beta)\,</math> are independent, then <math>\tfrac{X}{X+Y} \sim \operatorname{Beta}(\tfrac{\alpha}{2}, \tfrac{\beta}{2})</math>. * The [[Power transformation (statistics)|power transformation]] for the uniform distribution: If ''X'' ~ U(0, 1) and ''α'' > 0 then ''X''<sup>1/''α''</sup> ~ Beta(''α'', 1). * [[Cauchy distribution]]: If ''X'' ~ Cauchy(0, 1) then <math>\tfrac{1}{1+X^2} \sim \operatorname{Beta}\left(\tfrac12, \tfrac12\right)\,</math> ===Combination with other distributions=== * ''X'' ~ Beta(''α'', ''β'') and ''Y'' ~ F(2''β'',2''α'') then <math>\Pr(X \leq \tfrac \alpha {\alpha+\beta x}) = \Pr(Y \geq x)\,</math> for all ''x'' > 0. ===Compounding with other distributions=== * If ''p'' ~ Beta(α, β) and ''X'' ~ Bin(''k'', ''p'') then ''X'' ~ [[beta-binomial distribution]] * If ''p'' ~ Beta(α, β) and ''X'' ~ NB(''r'', ''p'') then ''X'' ~ [[beta negative binomial distribution]] ===Generalisations=== * The generalization to multiple variables, i.e. a [[Dirichlet distribution|multivariate Beta distribution]], is called a [[Dirichlet distribution]]. Univariate marginals of the Dirichlet distribution have a beta distribution. The beta distribution is [[Conjugate prior|conjugate]] to the binomial and Bernoulli distributions in exactly the same way as the [[Dirichlet distribution]] is conjugate to the [[multinomial distribution]] and [[categorical distribution]]. * The [[Pearson distribution#The Pearson type I distribution|Pearson type I distribution]] is identical to the beta distribution (except for arbitrary shifting and re-scaling that can also be accomplished with the four parameter parametrization of the beta distribution). * The beta distribution is the special case of the [[noncentral beta distribution]] where <math>\lambda = 0</math>: <math>\operatorname{Beta}(\alpha, \beta) = \operatorname{NonCentralBeta}(\alpha,\beta,0)</math>. * The [[generalized beta distribution]] is a five-parameter distribution family which has the beta distribution as a special case. * The [[matrix variate beta distribution]] is a distribution for [[positive-definite matrices]].
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)