Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Dirac delta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
==External links== *{{Commons category-inline}} *{{springer|title=Delta-function|id=p/d030950}} *[http://www.khanacademy.org/video/dirac-delta-function KhanAcademy.org video lesson] *[http://www.physicsforums.com/showthread.php?t=73447 The Dirac Delta function], a tutorial on the Dirac delta function. *[http://ocw.mit.edu/courses/mathematics/18-03-differential-equations-spring-2010/video-lectures/lecture-23-use-with-impulse-inputs Video Lectures β Lecture 23], a lecture by [[Arthur Mattuck]]. *[http://www.osaka-kyoiku.ac.jp/~ashino/pdf/chinaproceedings.pdf The Dirac delta measure is a hyperfunction] *[http://www.ing-mat.udec.cl/~rodolfo/Papers/BGR-3.pdf We show the existence of a unique solution and analyze a finite element approximation when the source term is a Dirac delta measure] *[http://www.mathematik.uni-muenchen.de/~lerdos/WS04/FA/content.html Non-Lebesgue measures on R. Lebesgue-Stieltjes measure, Dirac delta measure.] {{Webarchive|url=https://web.archive.org/web/20080307221128/http://www.mathematik.uni-muenchen.de/~lerdos/WS04/FA/content.html |date=2008-03-07 }} {{ProbDistributions|miscellaneous}} {{Differential equations topics}} {{good article}} [[Category:Fourier analysis]] [[Category:Generalized functions]] [[Category:Measure theory]] [[Category:Digital signal processing]] [[Category:Paul Dirac|Delta function]] [[Category:Schwartz distributions]]
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)