Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Propositional formula
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Oscillation === In the abstract (ideal) case the simplest oscillating formula is a NOT fed back to itself: ~(~(p=q)) = q. Analysis of an abstract (ideal) propositional formula in a truth-table reveals an inconsistency for both p=1 and p=0 cases: When p=1, q=0, this cannot be because p=q; ditto for when p=0 and q=1. {| |- style="font-size:9pt" align="center" ! width="14.25" Height="12" | ! width="5.25" | ! style="background-color:#EAF1DD;font-weight:bold" width="14.25" | q ! style="font-weight:bold" width="12.75" | ! width="14.25" | ! width="12.75" | ! width="23.25" | ! width="111" | |- style="font-size:9pt" align="center" ! style="font-weight:bold" Height="12" | p ! ! style="background-color:#EAF1DD;font-weight:bold" | ~ ! style="font-weight:bold" | ( ! style="font-weight:bold" | p ! style="font-weight:bold" | ) ! style="font-weight:bold" | = q ! |- style="font-size:9pt" align="center" | Height="12" | 0 | |style="background-color:red" | 1 |style="background-color:#D8D8D8" | |style="background-color:red" | 0 |style="background-color:#D8D8D8" | |style="background-color:#D8D8D8" | 1 |style="background-color:#D8D8D8" | q & p inconsistent |- style="font-size:9pt" align="center" | Height="12" | 1 | |style="background-color:red" | 0 |style="background-color:#D8D8D8" | |style="background-color:red" | 1 |style="background-color:#D8D8D8" | |style="background-color:#D8D8D8" | 0 |style="background-color:#D8D8D8" | q & p inconsistent |} [[File:Propositional formula oscillator 1.png|400px|thumb|right]] '''Oscillation with delay''': If a delay<ref>The notion of delay and the principle of local causation as caused ultimately by the speed of light appears in Robin Gandy (1980), "Church's thesis and Principles for Mechanisms", in J. Barwise, H. J. Keisler and K. Kunen, eds., ''The Kleene Symposium'', North-Holland Publishing Company (1980) 123-148. Gandy considered this to be the most important of his principles: "Contemporary physics rejects the possibility of instantaneous action at a distance" (p. 135). Gandy was [[Alan Turing]]'s student and close friend.</ref> (ideal or non-ideal) is inserted in the abstract formula between p and q then p will oscillate between 1 and 0: 101010...101... ''ad infinitum''. If either of the delay and NOT are not abstract (i.e. not ideal), the type of analysis to be used will be dependent upon the exact nature of the objects that make up the oscillator; such things fall outside mathematics and into engineering. Analysis requires a delay to be inserted and then the loop cut between the delay and the input "p". The delay must be viewed as a kind of proposition that has "qd" (q-delayed) as output for "q" as input. This new proposition adds another column to the truth table. The inconsistency is now between "qd" and "p" as shown in red; two stable states resulting: {| |- style="font-size:9pt" align="center" ! width="16.5" Height="12" | ! width="14.25" | ! width="8.25" | ! style="background-color:#EAF1DD;font-weight:bold" width="14.25" | q ! style="font-weight:bold" width="12.75" | ! width="14.25" | ! width="12.75" | ! width="23.25" | ! width="111" | |- style="font-size:9pt" align="center" ! style="font-weight:bold" Height="12" | qd ! style="font-weight:bold" | p ! style="font-weight:bold" | ( ! style="background-color:#EAF1DD;font-weight:bold" | ~ ! style="font-weight:bold" | ( ! style="font-weight:bold" | p ! style="font-weight:bold" | ) ! style="background-color:#EAF1DD;font-weight:bold" | = q ! |- style="font-size:9pt" align="center" | Height="12" | 0 | 0 | |style="background-color:#EAF1DD" | 1 | | 0 | |style="background-color:#EAF1DD" | 1 | state 1 |- style="font-size:9pt" align="center" |style="background-color:red" Height="12" | 0 |style="background-color:red" | 1 |style="background-color:#D8D8D8" | |style="background-color:#D8D8D8" | 0 |style="background-color:#D8D8D8" | |style="background-color:#D8D8D8" | 1 |style="background-color:#D8D8D8" | |style="background-color:#D8D8D8" | 0 |style="background-color:#D8D8D8" | qd & p inconsistent |- style="font-size:9pt" align="center" |style="background-color:red" Height="12" | 1 |style="background-color:red" | 0 |style="background-color:#D8D8D8" | |style="background-color:#D8D8D8" | 1 |style="background-color:#D8D8D8" | |style="background-color:#D8D8D8" | 0 |style="background-color:#D8D8D8" | |style="background-color:#D8D8D8" | 1 |style="background-color:#D8D8D8" | qd & p inconsistent |- style="font-size:9pt" align="center" | Height="12" | 1 | 1 | |style="background-color:#EAF1DD" | 0 | | 1 | |style="background-color:#EAF1DD" | 0 | state 0 |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)