Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Theta function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Overpartition number sequence === The [[Maclaurin series]] for the reciprocal of the function {{math|''{{not a typo|Ο}}<sub>01</sub>''}} has the numbers of [[Partition function (number theory)|over partition sequence]] as coefficients with a positive sign:<ref>{{cite journal | last=Mahlburg | first=Karl | title=The overpartition function modulo small powers of 2 | journal=Discrete Mathematics | volume=286 | issue=3 | date=2004 | doi=10.1016/j.disc.2004.03.014 | pages=263β267}}</ref> : <math>\frac{1}{\theta_{4}(x)} = \prod_{n=1}^{\infty} \frac{1 + x^{n}}{1 - x^{n }} = \sum_{k=0}^{\infty} \overline{P}(k)x^{k}</math> : <math>\frac{1}{\theta_{4}(x)} = 1+2x+4x^2+8x^3+14x^4+24x^5+40x^6+64x^7+100x^ 8+154x^9+232x^{10} + \dots</math> If, for a given number <math>k</math>, all partitions are set up in such a way that the summand size never increases, and all those summands that do not have a summand of the same size to the left of themselves can be marked for each partition of this type, then it will be the resulting number<ref>{{cite journal|language=en|title=Elsevier Enhanced Reader|journal=Discrete Mathematics |date=28 April 2009 |volume=309 |issue=8 |pages=2528β2532 |doi=10.1016/j.disc.2008.05.007 |last1=Kim |first1=Byungchan |doi-access=free }}<!-- auto-translated by Module:CS1 translator --></ref> of the marked partitions depending on <math>k</math> by the overpartition function <math>\overline{P}(k)</math> . First example: : <math>\overline{P}(4) = 14</math> These 14 possibilities of partition markings exist for the sum 4: {| class="wikitable" |(4), ('''4'''), (3+1), ('''3'''+1), (3+'''1'''), ('''3'''+'''1'''), (2+2), ('''2'''+2), (2+1+1), ('''2'''+1+1), (2+'''1'''+1), ('''2'''+'''1'''+1), (1+1+1+1), ('''1'''+1+1+1) |} Second example: : <math>\overline{P}(5) = 24</math> These 24 possibilities of partition markings exist for the sum 5: {| class="wikitable" |(5), ('''5'''), (4+1), ('''4'''+1), (4+'''1'''), ('''4'''+'''1'''), (3+2), ('''3'''+2), (3+'''2'''), ('''3'''+'''2'''), (3+1+1), ('''3'''+1+1), (3+'''1'''+1), ('''3'''+'''1'''+1), (2+2+1), ('''2'''+2+1), (2+2+'''1'''), ('''2'''+2+'''1'''), (2+1+1+1), ('''2'''+1+1+1), (2+'''1'''+1+1), ('''2'''+'''1'''+1+1), (1+1+1+1+1), ('''1'''+1+1+1+1) |}
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)