Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Beta distribution
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
===Transformations=== * If ''X'' ~ Beta(''α'', ''β'') then 1 − ''X'' ~ Beta(''β'', ''α'') [[Mirror image|mirror-image]] symmetry * If ''X'' ~ Beta(''α'', ''β'') then <math>\tfrac{X}{1-X} \sim {\beta'}(\alpha,\beta)</math>. The [[beta prime distribution]], also called "beta distribution of the second kind". * If <math>X\sim\text{Beta}(\alpha,\beta)</math>, then <math>Y=\log\frac{X}{1-X}</math> has a [[generalized logistic distribution]], with density <math>\frac{\sigma(y)^\alpha\sigma(-y)^\beta}{B(\alpha,\beta)}</math>, where <math>\sigma</math> is the [[logistic sigmoid]]. * If ''X'' ~ Beta(''α'', ''β'') then <math>\tfrac{1}{X} -1 \sim {\beta'}(\beta,\alpha)</math>. * If <math>X\sim\text{Beta}(\alpha_1,\beta_1)</math> and <math>Y\sim\text{Beta}(\alpha_2,\beta_2)</math> then <math>Z = \tfrac{X}{Y}</math> has density <math> \tfrac{B(\alpha_1 +\alpha_2, \beta_2) z^{\alpha_1 - 1} {}_2F_1(\alpha_1 + \alpha_2, 1- \beta_1; \alpha_1 +\alpha_2 + \beta_2; z) }{B(\alpha_1, \beta_1)B(\alpha_2, \beta_2)} </math> for <math>0 < z \leq 1 </math> and <math> \tfrac{B(\alpha_1 +\alpha_2, \beta_1) z^{-(\alpha_2 + 1)} {}_2F_1(\alpha_1 + \alpha_2, 1- \beta_2; \alpha_1 +\alpha_2 + \beta_1; \tfrac{1}{z})}{B(\alpha_1, \beta_1)B(\alpha_2, \beta_2)} </math> for <math> z \geq 1 </math>, where <math>{}_2F_1(a, b; c; x)</math> is the [[Hypergeometric function]].<ref name="Pham-Gia2000">{{cite journal |last1=Pham-Gia |first1=T. |title=Distributions of the ratios of independent beta variables and applications |journal=Communications in Statistics - Theory and Methods |date=January 2000 |volume=29 |issue=12 |pages=2693–2715 |doi=10.1080/03610920008832632 |url=https://doi.org/10.1080/03610920008832632 |access-date=13 November 2024 |language=en |issn=0361-0926}}</ref> * If ''X'' ~ Beta(''n''/2, ''m''/2) then <math>\tfrac{mX}{n(1-X)} \sim F(n,m)</math> (assuming ''n'' > 0 and ''m'' > 0), the [[F-distribution|Fisher–Snedecor F distribution]]. * If <math>X \sim \operatorname{Beta}\left(1+\lambda\tfrac{m-\min}{\max-\min}, 1 + \lambda\tfrac{\max-m}{\max-\min}\right)</math> then min + ''X''(max − min) ~ PERT(min, max, ''m'', ''λ'') where ''PERT'' denotes a [[PERT distribution]] used in [[PERT]] analysis, and ''m''=most likely value.<ref name=NewPERT>Herrerías-Velasco, José Manuel and Herrerías-Pleguezuelo, Rafael and René van Dorp, Johan. (2011). Revisiting the PERT mean and Variance. European Journal of Operational Research (210), p. 448–451.</ref> Traditionally<ref name=Malcolm /> ''λ'' = 4 in PERT analysis. * If ''X'' ~ Beta(1, ''β'') then ''X'' ~ [[Kumaraswamy distribution]] with parameters (1, ''β'') * If ''X'' ~ Beta(''α'', 1) then ''X'' ~ [[Kumaraswamy distribution]] with parameters (''α'', 1) * If ''X'' ~ Beta(''α'', 1) then −ln(''X'') ~ Exponential(''α'')
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)