Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Determinant
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Decomposition methods === Some methods compute <math>\det(A)</math> by writing the matrix as a product of matrices whose determinants can be more easily computed. Such techniques are referred to as decomposition methods. Examples include the [[LU decomposition]], the [[QR decomposition]] or the [[Cholesky decomposition]] (for [[Positive definite matrix|positive definite matrices]]). These methods are of order <math>\operatorname O(n^3)</math>, which is a significant improvement over <math>\operatorname O (n!)</math>.<ref>{{cite arXiv|last=Camarero|first=Cristóbal|date=2018-12-05|title=Simple, Fast and Practicable Algorithms for Cholesky, LU and QR Decomposition Using Fast Rectangular Matrix Multiplication|class=cs.NA|eprint=1812.02056}}</ref> For example, LU decomposition expresses <math>A</math> as a product :<math> A = PLU. </math> of a [[permutation matrix]] <math>P</math> (which has exactly a single <math>1</math> in each column, and otherwise zeros), a lower triangular matrix <math>L</math> and an upper triangular matrix <math>U</math>. The determinants of the two triangular matrices <math>L</math> and <math>U</math> can be quickly calculated, since they are the products of the respective diagonal entries. The determinant of <math>P</math> is just the sign <math>\varepsilon</math> of the corresponding permutation (which is <math>+1</math> for an even number of permutations and is <math> -1 </math> for an odd number of permutations). Once such a LU decomposition is known for <math>A</math>, its determinant is readily computed as :<math> \det(A) = \varepsilon \det(L)\cdot\det(U). </math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)