Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Generating function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Example 2: Modified binomial coefficient sums and the binomial transform==== As another example of using generating functions to relate sequences and manipulate sums, for an arbitrary sequence {{math|β¨ ''f<sub>n</sub>'' β©}} we define the two sequences of sums <math display="block">\begin{align} s_n &:= \sum_{m=0}^n \binom{n}{m} f_m 3^{n-m} \\[4px] \tilde{s}_n &:= \sum_{m=0}^n \binom{n}{m} (m+1)(m+2)(m+3) f_m 3^{n-m}\,, \end{align}</math> for all {{math|''n'' β₯ 0}}, and seek to express the second sums in terms of the first. We suggest an approach by generating functions. First, we use the [[binomial transform]] to write the generating function for the first sum as <math display="block">S(z) = \frac{1}{1-3z} F\left(\frac{z}{1-3z}\right). </math> Since the generating function for the sequence {{math|β¨ (''n'' + 1)(''n'' + 2)(''n'' + 3) ''f<sub>n</sub>'' β©}} is given by <math display="block">6 F(z) + 18z F'(z) + 9z^2 F''(z) + z^3 F'''(z)</math> we may write the generating function for the second sum defined above in the form <math display="block">\tilde{S}(z) = \frac{6}{(1-3z)} F\left(\frac{z}{1-3z}\right)+\frac{18z}{(1-3z)^2} F'\left(\frac{z}{1-3z}\right)+\frac{9z^2}{(1-3z)^3} F''\left(\frac{z}{1-3z}\right)+\frac{z^3}{(1-3z)^4} F'''\left(\frac{z}{1-3z}\right). </math> In particular, we may write this modified sum generating function in the form of <math display="block">a(z) \cdot S(z) + b(z) \cdot z S'(z) + c(z) \cdot z^2 S''(z) + d(z) \cdot z^3 S'''(z), </math> for {{math|''a''(''z'') {{=}} 6(1 β 3''z'')<sup>3</sup>}}, {{math|''b''(''z'') {{=}} 18(1 β 3''z'')<sup>3</sup>}}, {{math|''c''(''z'') {{=}} 9(1 β 3''z'')<sup>3</sup>}}, and {{math|''d''(''z'') {{=}} (1 β 3''z'')<sup>3</sup>}}, where {{math|(1 β 3''z'')<sup>3</sup> {{=}} 1 β 9''z'' + 27''z''<sup>2</sup> β 27''z''<sup>3</sup>}}. Finally, it follows that we may express the second sums through the first sums in the following form: <math display="block">\begin{align} \tilde{s}_n & = [z^n]\left(6(1-3z)^3 \sum_{n = 0}^\infty s_n z^n + 18 (1-3z)^3 \sum_{n = 0}^\infty n s_n z^n + 9 (1-3z)^3 \sum_{n = 0}^\infty n(n-1) s_n z^n + (1-3z)^3 \sum_{n = 0}^\infty n(n-1)(n-2) s_n z^n\right) \\[4px] & = (n+1)(n+2)(n+3) s_n - 9 n(n+1)(n+2) s_{n-1} + 27 (n-1)n(n+1) s_{n-2} - (n-2)(n-1)n s_{n-3}. \end{align}</math>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)