Open main menu
Home
Random
Recent changes
Special pages
Community portal
Preferences
About Wikipedia
Disclaimers
Incubator escapee wiki
Search
User menu
Talk
Dark mode
Contributions
Create account
Log in
Editing
Lambert W function
(section)
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Generalizations == The standard Lambert {{mvar|W}} function expresses exact solutions to ''transcendental algebraic'' equations (in {{mvar|x}}) of the form: {{NumBlk||<math display="block"> e^{-c x} = a_0 (x-r)</math>|{{EquationRef|1}}}} where {{math|''a''<sub>0</sub>}}, {{mvar|c}} and {{mvar|r}} are real constants. The solution is <math display="block"> x = r + \frac{1}{c} W\left( \frac{c\,e^{-c r}}{a_0} \right). </math> Generalizations of the Lambert {{mvar|W}} function<ref>{{cite journal |first1=T. C. |last1=Scott |first2=R. B. |last2=Mann |year=2006 |title=General Relativity and Quantum Mechanics: Towards a Generalization of the Lambert ''W'' Function |journal=AAECC (Applicable Algebra in Engineering, Communication and Computing) |volume=17 |issue=1 |pages=41–47 |doi=10.1007/s00200-006-0196-1 |arxiv=math-ph/0607011 |bibcode=2006math.ph...7011S |last3=Martinez Ii |first3=Roberto E. |s2cid=14664985 }}</ref><ref>{{cite journal |first1=T. C. |last1=Scott |first2=G. |last2=Fee |first3=J. |last3=Grotendorst |year=2013 |title=Asymptotic series of Generalized Lambert ''W'' Function |journal=SIGSAM (ACM Special Interest Group in Symbolic and Algebraic Manipulation) |volume=47 |issue=185 |pages=75–83|doi=10.1145/2576802.2576804|s2cid=15370297 |url=http://www.sigsam.org/cca/issues/issue185.html}}</ref><ref>{{cite journal |first1=T. C. |last1=Scott |first2=G. |last2=Fee |first3=J. |last3=Grotendorst|first4=W.Z. |last4=Zhang| year=2014|title=Numerics of the Generalized Lambert ''W'' Function|journal=SIGSAM |volume=48 |issue=1/2| pages=42–56| doi=10.1145/2644288.2644298| s2cid=15776321 |url=http://www.sigsam.org/cca/issues/issue188.html}}</ref> include: <ul> <li>An application to [[general relativity]] and [[quantum mechanics]] ([[Quantum gravity#The dilaton|quantum gravity]]) in lower dimensions, in fact a link (unknown prior to 2007<ref>{{cite journal |first1=P. S. |last1=Farrugia |first2=R. B. |last2=Mann |first3=T. C. |last3=Scott |year=2007 |title=''N''-body Gravity and the Schrödinger Equation |journal=Class. Quantum Grav. |volume=24 |issue=18 |pages=4647–4659 |doi=10.1088/0264-9381/24/18/006 |arxiv=gr-qc/0611144 |bibcode=2007CQGra..24.4647F |s2cid=119365501 }}</ref>) between these two areas, where the right-hand side of ({{EquationNote|1}}) is replaced by a quadratic polynomial in {{math|''x''}}: {{NumBlk||<math display="block">e^{-c x} = a_0 \left(x-r_1 \right) \left(x-r_2 \right),</math>|{{EquationRef|2}}}} where {{math|''r''<sub>1</sub>}} and {{math|''r''<sub>2</sub>}} are real distinct constants, the roots of the quadratic polynomial. Here, the solution is a function which has a single argument {{mvar|x}} but the terms like {{math|''r<sub>i</sub>''}} and {{math|''a''<sub>0</sub>}} are parameters of that function. In this respect, the generalization resembles the [[hypergeometric]] function and the [[Meijer G-function|Meijer {{mvar|G}} function]] but it belongs to a different ''class'' of functions. When {{math|1=''r''<sub>1</sub> = ''r''<sub>2</sub>}}, both sides of ({{EquationNote|2}}) can be factored and reduced to ({{EquationNote|1}}) and thus the solution reduces to that of the standard {{mvar|W}} function. Equation ({{EquationNote|2}}) expresses the equation governing the [[dilaton]] field, from which is derived the metric of the [[R = T model|{{math|1=''R'' = ''T''}}]] or ''lineal'' two-body gravity problem in 1 + 1 dimensions (one spatial dimension and one time dimension) for the case of unequal rest masses, as well as the eigenenergies of the quantum-mechanical [[Delta potential#Double Delta Potential|double-well Dirac delta function model]] for ''unequal'' charges in one dimension. </li> <li>Analytical solutions of the eigenenergies of a special case of the quantum mechanical [[Euler's three-body problem|three-body problem]], namely the (three-dimensional) [[hydrogen molecule-ion]].<ref>{{cite journal |first1=T. C. |last1=Scott |first2=M. |last2=Aubert-Frécon |first3=J. |last3=Grotendorst |year=2006 |title=New Approach for the Electronic Energies of the Hydrogen Molecular Ion |journal=Chem. Phys. |volume=324 |issue=2–3 |pages=323–338 |doi=10.1016/j.chemphys.2005.10.031 |arxiv=physics/0607081 |bibcode=2006CP....324..323S |citeseerx=10.1.1.261.9067 |s2cid=623114 }}</ref> Here the right-hand side of ({{EquationNote|1}}) is replaced by a ratio of infinite order polynomials in {{mvar|x}}: {{NumBlk||<math display="block"> e^{-c x} = a_0 \frac{\displaystyle \prod_{i=1}^\infty (x-r_i )}{\displaystyle \prod_{i=1}^\infty (x-s_i)}</math>|{{EquationRef|3}}}} where {{math|''r''<sub>''i''</sub>}} and {{math|''s''<sub>''i''</sub>}} are distinct real constants and {{mvar|x}} is a function of the eigenenergy and the internuclear distance {{mvar|R}}. Equation ({{EquationNote|3}}) with its specialized cases expressed in ({{EquationNote|1}}) and ({{EquationNote|2}}) is related to a large class of [[delay differential equation]]s. [[G. H. Hardy]]'s notion of a "false derivative" provides exact multiple roots to special cases of ({{EquationNote|3}}).<ref>{{cite journal |first1=Aude |last1=Maignan |first2=T. C. |last2=Scott |year=2016|title=Fleshing out the Generalized Lambert ''W'' Function| journal=SIGSAM |volume=50 |issue=2|pages=45–60|doi=10.1145/2992274.2992275|s2cid=53222884 }}</ref> </li> </ul> Applications of the Lambert {{mvar|W}} function in fundamental physical problems are not exhausted even for the standard case expressed in ({{EquationNote|1}}) as seen recently in the area of [[atomic, molecular, and optical physics]].<ref>{{cite journal |first1=T. C. |last1=Scott |first2=A. |last2=Lüchow |first3=D. |last3=Bressanini |first4=J. D. III |last4=Morgan |year=2007 |title=The Nodal Surfaces of Helium Atom Eigenfunctions |journal=[[Physical Review|Phys. Rev. A]] |volume=75 |issue=6 |pages=060101 |doi=10.1103/PhysRevA.75.060101 |bibcode=2007PhRvA..75f0101S |hdl=11383/1679348 |url=https://irinsubria.uninsubria.it/bitstream/11383/1679348/1/2007-scott-pra2007.pdf |archive-url=https://web.archive.org/web/20170922054740/https://irinsubria.uninsubria.it/bitstream/11383/1679348/1/2007-scott-pra2007.pdf |archive-date=2017-09-22 |url-status=live |hdl-access=free }}</ref>
Edit summary
(Briefly describe your changes)
By publishing changes, you agree to the
Terms of Use
, and you irrevocably agree to release your contribution under the
CC BY-SA 4.0 License
and the
GFDL
. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel
Editing help
(opens in new window)